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a b s t r a c t

For linear systems with pointwise or distributed delay in the inputs which are stabilized through the
reduction approach, we propose a new technique of construction of Lyapunov–Krasovskii functionals.
These functionals allow us to establish the ISS property of the closed-loop systems relative to additive
disturbances.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Controlling dynamical systems including delays in the inputs
was a problem of recurring interest in the past fifty years since it
frequently arises in control applications, due to the transport and
measurement delays that naturally occur (for more details, see,
e.g., Michiels and Niculescu (2007)).

A number of approaches to deal with input delays have
been proposed in both frequency- and time-domains. Among
them, for linear systems, two of the most celebrated are the
Smith predictor and the reduction technique, also known as finite
spectrum assignment (FSA). To the best of the authors’ knowledge,
the reduction approach originates in Mayne (1968), with the well
known contributions that have followed in Kwon and Pearson
(1980), Manitius and Olbrot (1979) and Olbrot (1978), which have
been systematized and generalized in Artstein (1982), to which
we refer the reader for a pedagogical exposition. This technique
is popular and frequently used in practice for stabilizing linear
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systems with delay in the input, due to the fact that, under
an appropriate transformation, the system reduces to a finite-
dimensional one. However, the control applied to the original
dynamics is complicated. Alternatives to the popular reduction
approach include the general observer–predictor structure in
Mirkin and Raskin (2003) and the H∞ approach in Tadmor (2000).

The reduction approach applies to cases where the delays are
too large for being neglected, as done for instance in Mazenc,
Malisoff, and Lin (2008): the one-dimensional system

Ẋ(t) = X(t) + U(t − τ), (1)

where U is the input, can be exponentially stabilized through the
reduction approach for any constant delay τ ≥ 0 although, when τ
is larger than a certain value, there is no continuous functionϕ such
that the feedbackU(t−τ) = ϕ(X(t−τ)) asymptotically stabilizes
(1). Moreover, this technique applies to cases where the delays
are either pointwise or distributed, and significantly simplifies
stabilization problems for systems with delay by reducing them
to similar problems for ordinary differential equations (see, for
instance Fiagbedzi and Pearson (1986) and Wang, Lee, and Tan
(1998) for further discussions).

Although Lyapunov functionals are tools whose importance
is more and more recognized by the researchers who work in
delay area (see for instance (Bekiaris-Liberis & Krstic, 2011),
Karafyllis and Jiang (2011), Pepe and Verriest (2003) and Zhou,
Lin, and Duan (2010)), strict Lyapunov–Krasovskii functionals
for linear systems in closed-loop with feedbacks resulting from
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the reduction approach have been constructed only recently in
Bekiaris-Liberis and Krstic (2011) using a novel approach which
relies on the introduction of a hyperbolic PDE. This result is
motivated by the important benefits which can be derived from
the knowledge of a strict Lyapunov–Krasovskii functional. In
particular, strict Lyapunov–Krasovskii functionals are frequently
ISS or iISS Lyapunov–Krasovskii functionals as defined and
discussed in Pepe and Jiang (2006) for systems with disturbances,
which straightforwardly implies that the systems possess the
desirable ISS or iISS property with respect to these disturbances
(see Sontag (2007) for information on the celebrated ISS notion).

In the present work, we revisit the problem of constructing
Lyapunov–Krasovskii functionals for two main families of closed-
loop systems with additive disturbances: the first class is
associated with the classical reduction approach and the second
is employing dynamic feedback to overcome the instability that
arises in some implementations of control laws specific to the
classical reduction approach. The new construction we propose
shares some features with the one of Mazenc and Niculescu (2011)
which relies on the representation of a system with delay as
an ordinary differential equation interconnected with an integral
equation. However, the Lyapunov functionals we propose here
are by no means straightforwardly deduced from Mazenc and
Niculescu (2011). Indeed, by contrast with the feedbacks resulting
from the reduction approach, the control laws considered in
Mazenc and Niculescu (2011) do not have distributed terms.
Furthermore, our ISS Lyapunov–Krasovskii functionals do not
rely on the introduction of hyperbolic PDEs and therefore are
significantly different from those proposed in Bekiaris-Liberis and
Krstic (2011), Krstic (2008) and Krstic and Smyshlaev (2008).

The paper is organized as follows. In Section 2, a construction
of functionals for a general family of systems is presented.
From the latter result, Lyapunov–Krasovskii functionals for three
families of systems stabilized via control laws provided by the
reduction model approach are deduced in Section 3. Finally, some
conclusions are drawn in Section 4.

Notation and definitions. • The notation will be simplified
whenever no confusion can arise from the context. • For any
integer p, we denote by Idp or simply Id the identitymatrix in Rp×p.
• We let | · | denote the Euclidean norm of matrices and vectors of
any dimension. • Given φ : I → Rp defined on an interval I,
let |φ|I denote its (essential) supremum over I. • For any integer
p, we let Cin = C([−τ , 0], Rp) denote the set of all continuous
Rp-valued functions defined on a given interval [−τ , 0]. • For a
function x : [−τ , +∞) → Rk, for all t ≥ 0, the function xt is
defined by xt(ℓ) = x(t + ℓ) for all ℓ ∈ [−τ , 0]. • Let K∞ denote
the set of all continuous functions ρ : [0, ∞) → [0, ∞) for which
(i) ρ(0) = 0 and (ii) ρ is strictly increasing and unbounded. •

We adopt a definition of ISS Lyapunov–Krasovskii functional for
coupled retarded functional differential equations and functional
equations, which is an adaptation to this family of systems of
the definitions given in Dashkovskiy and Naujok (2010) and Pepe,
Karafyllis, and Jiang (2008).

Definition 1. We consider a system composed by a retarded func-
tional differential equation coupled with a functional equation:ẋ1(t) = f1(x1t , x2t , u(t)),
x2(t) = f2(x1t , x2t),
(x1(r), x2(r)) = (x10(r), x20(r)), ∀r ∈ [−τ , 0],

(2)

where t ∈ [0, +∞), x1(t) ∈ RN1 , x2(t) ∈ RN2 , u(t) ∈ RN3 is
an essentially bounded measurable input and τ is the maximum
involved delay and the functionals f1 and f2 are locally Lipschitz
continuous on any bounded set such that all the solutions of (2)
with initial function inCin are defined andof classC1 over [0, +∞).

A locally Lipschitz continuous functional V : Cin → [0, +∞)
is called an ISS Lyapunov–Krasovskii functional for (2) if (i) there
are functions of class K∞, α1 and α2 such that, for all functions
(φ1, φ2) ∈ Cin the inequalities

α1(|(φ1(0), φ2(0))|) ≤ V (φ1, φ2) ≤ α2(|(φ1, φ2)|[−τ ,0]) (3)

are satisfied,
(ii) it is continuously differentiable along the trajectories of (2)

and satisfies:

V̇ (t) ≤ −α3(V (x1t , x2t)) + α4(|u(t)|), ∀t ∈ [0, +∞), (4)

where α3 and α4 are functions of class K∞.

2. Technical result

The result of this section is instrumental in establishing our
main results. However, it is of interest for its own sake.

2.1. System and assumptions

We consider the system

Σz,v :


ż(t) = f (z(t)) + δ(t), ∀t ≥ 0,
v(t) = Nz(t), ∀t ≥ 0, (5)

with z ∈ Rn, v ∈ Rm, where the initial conditions φz ∈ Cin and
φv ∈ Cin are such that φv(0) = Nφz(0), where N ∈ Rm×n is a
constantmatrix,N ≠ 0, where f is a function of class C1 andwhere
δ is a continuous function. Consider also the system

Σx : x(t) = g(xt , zt , vt), (6)

where g is a locally Lipschitz continuous functional.
We introduce two assumptions:

Assumption H1. There exists a function S of class C1, positive
definite and radially unbounded, a function κ1 of class K∞ and a
positive real number a1 such that

∂S
∂z

(z)[f (z) + δ] ≤ −a1S(z) + κ1(|δ|), (7)

for all z ∈ Rn and δ ∈ Rn.

Assumption H2. There exists a nonnegative function θ such that

θ(Nz) ≤
a1
2
S(z), (8)

for all z ∈ Rn, all the solutions (z(t), x(t)) of the system Σz,v − Σx
are defined and of class C1 over [0, +∞) and are such that, for all
t ≥ 0, the inequality

max{|x(t)|, |ẋ(t)|} ≤


a2


S(z(t)) + θ(vt) + κ2(|δ(t)|)


, (9)

where a2 is a positive real number, κ2 is a function of classK∞ and

θ(vt) = θ(v(t − τ)) +

 t

t−τ

θ(v(m))dm, (10)

is satisfied.

2.2. Discussion of the assumptions

1. The inequality (7) implies that the z-subsystem in (5) is ISS with
respect to δ.
2. The z-subsystem is written as an ordinary differential equation,
however, we regard it as a subsystem of the system with delay
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