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a b s t r a c t

In this paper, we are concerned with the problem of efficiently trading a large position on the market
place. If the execution of a large order is not dealt with appropriately this will certainly break the
price equilibrium and result in large losses. Thus, we consider a trading strategy that breaks the order
into small pieces and execute them over a predetermined period of time so as to minimize the overall
execution shortfall while matching or exceeding major execution benchmarks such as the volume-
weighted average price (VWAP). The underlying problem is formulated as a discrete-time stochastic
optimal control problemwith resource constraints. The value function and optimal trading strategies are
derived in closed form. Numerical simulations with market data are reported to illustrate the pertinence
of these results.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

With the increasing number of institutional investors like
mutual funds, pension funds, hedge funds and private equity
firms, who usually trade large positions on the market place, the
automatic execution of those orderswith computer programs have
been growing exponentially over the last two decades. Algorithmic
trading has improved over time; a wide variety of algorithms are
actually being used to trade large positions with various levels
of efficiency. Major financial institutions nowadays maintain one
proprietary trading unit which uses algorithmic trading to execute
large orders. One of the main issues that arise when trading large
positions is the impact that the execution has on the share price
itself. It becomes evident that the first thing that one should
consider is to minimize the implementation shortfall of the trade,
and then one can consider how the execution has fared with
main market benchmarks. However, despite the wide range of
algorithms used in electronic trading, the problem of effectively
measuring the performance of these algorithms in light of various
market parameters is still open. In fact there is no formal consensus
among practitioners on which benchmark to use in order to
measure the performance of a given algorithm. Among the various
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benchmarks available, the volume-weighted average price (VWAP)
and the time-weighted average price (TWAP) are considered as
particularly reliable quality measures for a large execution order.

Various aspects of this problem have been studied in the
literature, both from the academic viewpoint as well as from that
of industry. Among many other studies we may cite the work
of Almgren and Chriss (1999, 2000). These authors had mainly
used the mean–variance optimization to study the minimization
of the implementation shortfall in the execution of large orders.
They have proposed a wide variety of trading strategies under
the assumption that the share price follows an arithmetic
Brownian motion process. Moreover, selling rule problems have
also generated great interests in the literature; one can refer
to the work of Pemy and Zhang (2006), who have proposed
optimal selling strategies under the regime switching framework.
In addition, Helmes (2004) considered computational issues of
the selling rule by using a linear programming approach. Pemy,
Yin, and Zhang (2008) studied the liquidation of a large block of
stock under regime switching within the framework of stochastic
optimal control with state constraints.

In this paper, we study this problem as a discrete-time optimal
control problem. In fact we propose two main trading algorithms.
One mainly focuses on minimizing the execution shortfall and the
other focuses on maximizing the trading VWAP. The share price
follows a model based on the discrete version of the geometric
Brownian motion in both of our trading algorithms; this is in
clear contrast to the work of others, where the share price follows
an arithmetic Brownian motion. The problem of minimizing the
implementation shortfall is framed as a linear–quadratic tracking
control problem with resource constraints. In both cases the value
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functions and trading strategies are obtained in closed form.
Moreover the strategies proposed in this paper are mainly selling
strategies; in subsequent work, we will extend these methods and
combine selling and buying activities in both sell-side and buy-side
algorithms.

The rest of this paper is organized as follows. In Section 2, we
propose an algorithmminimizing execution shortfall. In Section 3,
an optimal VWAP algorithm is obtained. In Section 4, we present
numerical implementations of our algorithms using real market
data.

2. An algorithmminimizing execution shortfall

Consider an investor who holds a large number of shares, say
M , of a given stock and wants to sell his/her entire position by the
time T . We assume that the share price of the stock follows the
dynamics

xk+1 = g(xk,mk, ξk) = xk + xkµτ + σ xkξk
√

τ + f (mk),

x0 = x, (1)

where xk and mk respectively represent the share price and the
number of shares sold by the investor. The quantity τ is the time
unit; it can roughly be taken as τ = T/N where N is the total
number of times that shares are traded up to the time T . The ξk,
k = 1, 2, . . ., are independent and normally distributed random
variables with mean 0 and variance 1. The volatility of the stock is
σ and its return is µ. The function f represents the relative impact
on the share price of trading a certain number of shares. More
precisely, if we frequently put large blocks of shares in the market,
this will definitely bring the price down. In order to model that
effect, we have added a linear function of the number of shares
traded,mk, to our price dynamics. Thus, f (x) = λx, λ ∈ (−1, 0). In
Almgren andChriss (1999, 2000) the stock price follows an additive
Brownianmotionmodel. In this work, we propose instead amodel
based on the more traditional geometric Brownian motion.

Definition 2.1. 1. A selling strategy or policy is a finite sequence
of nonnegative numbers π = (mk)k such that

N
k=0 mk = M.

2. Given a selling strategy π , the volume-weighted average price
of π is

VWAP(π) =


mkxk
mk

. (2)

3. The market volume-weighted average price (VWAP) is defined
as

VWAPm =


vkxk
vk

, (3)

where vk is the volumeof shares traded at the kth selling period.

We denote by x̄ the arrival price of the selling execution order,
in other words, the actual share price when the execution order
is given to the trader. The expected execution shortfall S is then
obtained from the formula

S =

N
k=0

Emkxk − Mx̄,

where E represents the probability expectation.
Roughly speaking, our goal is to find a selling strategy that

will in some way minimize the expected execution shortfall. For
that we will use the optimal control framework; we will treat this
problem as an optimal tracking control. In other words, we will be
looking for a strategy that will enable us to sell our asset at prices
xk which are as close as possible to the arrival price x̄.We define the
tracking error ek = xk − x̄; our goal is to drive this error as close

as possible to zero. It is clear that the tracking error process (ek)k
follows the dynamics
ek+1 = ek + ekµτ + ekξkσ

√
τ + λmk + x̄µτ + x̄σξk

√
τ ,

with e0 = x − x̄. (4)
We define the function h as follows:
h(e, ξ ,m) = e + eµτ + eξσ

√
τ + λm + x̄µτ + x̄σξ

√
τ .

Thus our controlled dynamics is then
ek+1 = h(ek, ξk,mk) with e0 = x0 − x̄.
The execution shortfall can be given as a function of our tracking
error; thus

S =

N
k=0

Emkxk − Mx̄ =

N
k=0

Emkek. (5)

Given that we want to find selling strategies that minimize S =N
k=0 Emkek over all possible selling strategies, we will thus

formulate this problem as an optimal control problem.Wewill use
the linear–quadratic regulator to drag the error process (ek)k as
close as possible to zero aswe are selling. Thiswill certainly help us
to reduce the execution shortfall; moreover with the LQR control,
we will easily derive the control process and the value function.

2.1. The linear–quadratic regulator

In this section we will be looking for a control strategy
that substantially reduces our tracking error ek as we trade;
consequently this strategy will also in some way reduce our
execution shortfall. We will be using a linear–quadratic regulator
to control the tracking error ek. We consider the following control
problem:

(P )



minimize:
N

k=0

E(m2
k + e2k)

with: ek+1 = ek + ekµτ + ekξkσ
√

τ + λmk

+ x̄µτ + x̄σξk
√

τ ,
e0 = x0 − x̄,

subject to:
N

k=0

mk = M, and

mk ≥ 0, k = 0, . . . ,N.

(6)

This optimal control problem has a global resource constraintN
k=0 mk = M . We define our performance index as follows:

J(e; (mk)) =

N
k=0

E(ek)2 + m2
k . (7)

In order to take into account the constraints
N

k=0 mk = M and
mk ≥ 0 for all k, we add a Lagrange multiplier γ ≥ 0 to the
performance index J . For any initial error e, and a tracking control
policy (mk)k≤N , we set

J̃(e, γ ; (mk)) =

N
k=0

E(ek)2 + γmk + m2
k . (8)

The N-stage value function of our tracking control problem is
defined as follows:
VN(e, γ ) = min

(mk)k
J̃(e, γ ; (mk)k)

= min
(mk)k

N
k=0

E(ek)2 + γmk + m2
k . (9)

We will solve this control problem for a wide range of values γ ,
and for suitable values ofM , we can adjust γ such that the control
variable (mk(γ ))k satisfies the condition

N
k=0 mk(γ ) = M .
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