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a b s t r a c t

In this paper, we propose an approach for modeling fault coverage in nonlinear dynamical systems. Fault
coverage gives a measure of the likelihood that a system will be able to recover after a fault occurrence.
In our setup, the system dynamics are described by a standard state-space model. The system input
(disturbance) is considered to be unknown but bounded at all times. Before any fault occurrence, the
vector field governing the system dynamics is such that, for any possible input signal, the corresponding
system reach set is contained in some region of the state space defined by the system performance
requirements. When a fault occurs, the vector field that governs the system dynamics might be altered.
Fault coverage is defined as the probability that, given a fault has occurred, the system trajectories remain,
at all times, within the region of the state-space defined by the performance requirements. Input-to-state
stability (ISS) concepts are used to compute estimates of the proposed coverage model. Several examples
are discussed in order to illustrate the proposed modeling approach.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Fault tolerance can be defined as the ability of a system to adapt
and compensate in a systematic way to random component faults,
and keep delivering completely or partially the functionality for
which it was designed (Laprie, 1991). Fault tolerance is paramount
in control system design for safety- and mission-critical applica-
tions. For a specific fault, fault tolerance can be measured through
the notion of fault coverage, which can be defined as the condi-
tional probability that, given a fault that alters the system struc-
ture occurs, the system is able to recover and keeps functioning.
The notion of fault coverage was first introduced in the field of
fault-tolerant computing (see, e.g., Arnold, 1973, Bouricius, Carter,
& Schneider, 1969), and there is an extensive literature on fault
coverage modeling in this field. In this regard, most fault coverage
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models proposed in fault-tolerant computing are developed using
a probabilistic characterization of the faultmechanisms and recov-
ery process; in particular, Markovian models are commonly used
(see, e.g., Dugan & Trivedi, 1989, Pradhan, 1995 and the references
therein). For example, in Stiffler and Bryant (1982), a continuous-
time Markov chain is utilized, where the states of the chain rep-
resent the possible outcomes – the system fails or recovers – after
the fault occurrence. Then, fault coverage is obtained by computing
the probability that the system is in a state of the chain that results
in recovery from the fault. For a detailed discussion on fault cover-
age modeling in fault-tolerant computing, the reader is referred to
Dugan and Trivedi (1989) and Pradhan (1995).

In contrast with the approaches used in fault-tolerant comput-
ing, this paper focuses on fault coveragemodeling in nonlinear dy-
namical systems that can be described by the standard state-space
representation used in control theory, ẋ = f (x, u), with state x and
input u. Throughout this paper, we assume that the system input
u is unknown but bounded, which could correspond to an exter-
nal disturbance or to some uncertainty in the system operation,
e.g., uncertainties in the load of an electric power system (Sauer &
Pai, 1998). The vector field f is defined by the components con-
stituting the system and how these are interconnected. When a
fault occurs, the vector field f is altered, resulting in a new vec-
tor field f̂ . The performance requirements the system has to fulfill
are modeled as a certain region in the system state-space to which
the system state x is confined. Fault coverage is then defined as the
(conditional) probability that the system state x remains inside the
region specified by the performance requirements for all times. The
goal of the paper is to provide a method for obtaining fault cover-
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age estimates that can be analytically formulated using the system
state-space representation.

The definition of fault coverage adopted in this paper is relevant
in various contexts. In a fail-safe application, it might be the case
that violating the given performance requirement bounds might
be catastrophic, e.g., an aircraft going beyond a critical angle of
attack might cause the aircraft to stall. In such a case, it is desirable
to guarantee that the system never violates the performance
requirements, i.e., to ensure that fault coverage is equal to one
independently of the input distribution. However, there might
be other applications where performance requirements are ‘‘soft’’
constraints and violating them may cause the system to operate
in some degraded mode without catastrophic consequences. In
this case, assuming some knowledge of the input distribution,
if fault coverage is smaller than one, it does not mean that the
system cannot survive to a particular fault, but that after the
fault, it might deliver its functionality in a degraded fashion
(without necessarily failing catastrophically). For example, in an
AC power system, performance requirements impose constraints
on frequency deviations, and it is always desirable to keep
the frequency within some acceptable range, e.g., 59.6–60.4 Hz.
However, temporarily violating this requirement does not mean
the system fails catastrophically (Sauer & Pai, 1998).

Modeling faults as a change in the vector field f is common
when designing fault-tolerant controllers (see, e.g., Gao & Ding,
2007, Mao, Jiang, & Shi, 2010), and fault detection filters (see,
e.g., Willsky, 1976). The purpose of fault-tolerant controllers is
to ensure stability of the considered system despite the possible
occurrence of certain faults. Different methods in achieving this
have been proposed in the literature, both for linear and nonlinear
systems (see, e.g., Bonivento, Isidori, Marconi, & Paoli, 2004, Gao
& Ding, 2007, Mao et al., 2010, Qu, Ihlefeld, Jin, & Saengdeejing,
2003, Yang, Jiang, & Staroswiecki, 2009 and the references therein).
Considering this, the work in this paper can be seen as a method to
quantify the effectiveness of such fault-tolerant controllers, i.e., to
give a quantitative expression for the probability that the closed-
loop system meets the performance requirements for all times,
including the transient phase after the fault occurrence, even if
additional uncertainties/disturbances are present.

Fault coverage in the context of fault-tolerant control has also
been considered in Wu (2004), where a two-level architecture
consisting of the considered dynamical system at the lower level
and a discrete stateMarkov process at the upper level, representing
the set of possible failures, was used. There, the probabilistic
nature of fault coverage stems from a possible uncertainty in the
parameters describing a certain fault, and the coverage is intended
for decisionmaking in order to prevent the system from entering a
state corresponding to a permanent system failure. The framework
considered in this paper is significantly different as we explicitly
make use of the system dynamics, and utilize reachability analysis
techniques to compute fault coverage estimates. In particular,
in our framework the probabilistic nature of fault coverage is
due to the distribution of the system state at the time of fault
occurrence corresponding to the distribution of the input, and not
due to parameter uncertainties corresponding to fault occurrences.
Our framework provides an analytically tractable method for
computing fault coverage estimates, which in turn can directly be
incorporated when designing fault-tolerant controllers.

The idea of obtaining fault coverage estimates via the state
space representation of the considered system, which is used in
this paper, was already employed in Dominguez-Garcia, Kassakian,
and Schindall (2009) for linear system dynamics. However, the
techniques used for computing fault coverage estimates in the
nonlinear case are substantially different from the linear case.
While ellipsoidal-based reachability analysis techniques are used
in Domínguez-García et al. (2009), in this paper, we use input-to-
state stability (ISS) notions.

The structure of this paper is as follows. In Section 2, the system
model is presented. This section also provides some background
on input-to-state stability (ISS) notions, which are key in the
development of the proposed fault coverage model. In Section 3,
the formal definition of the proposed fault coveragemodel is given.
Section 4 provides analytically tractable methods to compute
estimates of the proposed fault coveragemodel. Section 5 presents
several examples that illustrate the ideas developed in the previous
sections. Concluding remarks are presented in Section 6.

2. Preliminaries

In this section, we introduce the dynamical systemmodel used
throughout the paper, and specify the performance requirements
the system is supposed to fulfill. Namely, we assume that our
system is described by a state-space representation with an
unknown-but-bounded input, and the performance requirements
constrain the system trajectories to a region of the state-space
defined by a symmetric polytope.

2.1. Fault-free system dynamics

Let the dynamics of a system operating with no faults be
represented by

ẋ(t) = f (x(t), u(t)), x(0) = x0,
u(t) ∈ Bu = {u : |u| ≤ umax}, (1)

where the state x ∈ Rn, the input u ∈ Rm, x0 ∈ Rn and umax ≥ 0.
The third equation implies that the input signal u (measurable
and locally bounded) is contained in a ball with radius umax for
all t . Assume that f (·, ·) is locally Lipschitz and the unforced
system ẋ = f (x, 0) has an asymptotically stable equilibrium point
at the origin. We assume that the system (1) is forward complete,
i.e., the solution x(t) exists for all t ≥ 0 and it will be contained in
the reachable set R(t).

2.1.1. Performance requirements
If the system is properly designed, it must meet some

performance requirements. These requirements constrain the
state-vector x to some region of the state-spaceΦ . We assume that
Φ is given by a symmetric polytope, defined by

Φ = {x : |π T
i x| ≤ 1, i = 1, 2, . . . , p}, (2)

with πi ∈ Rn. Then, for every u(·) with u(t) ∈ Bu for all t ≥ 0, in
order for the system to deliver its intended function, it has to hold
that x(t) ∈ Φ for all t ≥ 0, i.e., R(t) ⊆ Φ for all t ≥ 0.

Remark 1. The subsequent analysis also works if more general
constraints than those in the form of symmetric polytopes
are considered. However, in this case the computation of fault
coverage might become more complex or even computationally
intractable. Furthermore, performance requirements resulting in
polytopical state constraints are fairly general and include many
practical problems. �

2.2. System dynamics after a fault

Let T be a random variable representing the time to fault
occurrence. This fault alters the vector field f in (1), resulting in
a new vector field f̂ . Let τ be a realization of T . Then, after a fault,
the system state space representation is given by

ẋ(t̂) = f̂ (x(t̂), u(t̂)), x(t̂ = 0) = x(t = τ) ∈ R(τ ),

u(t̂) ∈ Bu = {u : |u| ≤ umax}, (3)
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