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a b s t r a c t

Apractical designmethod is developed for cooperative tracking control of higher-order nonlinear systems
with a dynamic leader. The communication network is a weighted directed graph with a fixed topology.
Each follower node is modeled by a higher-order integrator incorporating with unknown nonlinear
dynamics and an unknown disturbance. The leader node is modeled as a higher-order nonautonomous
nonlinear system. It acts as a command generator giving commands only to a small portion of the
networked group. A robust adaptive neural network controller is designed for each follower node such
that all follower nodes ultimately synchronize to the leader nodewith bounded residual errors. Moreover,
these controllers are distributed in the sense that the controller design for each follower node only
requires relative state information between itself and its neighbors. A simulation example demonstrates
the effectiveness of the algorithm.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Research on networked cooperative systems (or multi-agent
systems) has attracted much attention in the past two decades. Its
widespread applications include spacecraft, mobile robots, sensor
networks, etc. Some seminal works are Fax and Murray (2004),
Jadbabaie, Lin, and Morse (2003), Olfati-Saber and Murray (2004),
Ren and Beard (2005), and Tsitsiklis, Bertsekas, and Athans (1986),
to name a few.

Considerable effort has focused on two control problems
of networked systems, i.e., cooperative regulation problem and
cooperative tracking problem. For cooperative regulation problem,
controllers are designed to drive all the agents/nodes to a common
value, i.e., consensus equilibrium, which is not prescribed and
depends on initial conditions (Ren, Beard, & Atkins, 2007). This
is also known as (leaderless) consensus in the literature. As for
the cooperative tracking problem, there is a leader/control node
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that acts as a command generator, ignoring information from
all the other nodes. The leader node only gives commands to a
small portion of the networked group. All the follower nodes are
trying to track the trajectory of the leader node. This is called
leader–follower consensus, consensus with a virtual leader, or
synchronization to a leader in the literature. Numerous results on
these two topics have been published in the past few years and
readers are referred to survey papers (Olfati-Saber, Fax, & Murray,
2007; Ren et al., 2007; Ren, Beard, & Atkins, 2005) and references
therein.

This paper studies the cooperative tracking control of higher-
order nonlinear systems. Our research is motivated by the follow-
ing several observations. First, most existing works onmulti-agent
systems studied the first- and second-order systems. However, in
engineering, many systems are modeled by higher-order dynam-
ics. For example, a single link flexible joint manipulator is well
modeled by a fourth-order nonlinear system (Khalil, 2002). The
jerk (i.e., derivative of acceleration) systems, described by third-
order differential equations, are of particular interest in mechan-
ical engineering. Due to the challenges of designing cooperative
controls for systems distributed on communication graphs, it is
nontrivial to extend results for first- and second-order systems to
systems with higher-order dynamics. Therefore, the literature in
cooperative control hasmany papers dedicated to higher-order co-
operative control, most of which deal with higher-order linear sys-
tems ((Jiang, Wang, & Jia, 2009; Ren, Moore, & Chen, 2007; Wang
& Cheng, 2007; Zhang, Lewis, & Das, 2011) etc.).
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Second, even for the first- and second-order problems with
dynamics described by single or double integrators, cooperative
control has not been fully investigated. However, almost all
physical systems are inherently nonlinear, and cooperative control
of nonlinear systems is more challenging. Pinning control was
introduced for controlling synchronization of interconnected
dynamic systems with identical nonlinear dynamics (Li, Wang,
& Chen, 2004; Wang & Chen, 2002). But, in practice, the node
dynamics may be non-identical or even unknown. Consensus
of nonlinear systems was also studied recently in Lee and Ahn
(2010) and Qu, Chunyu, and Wang (2007), where the nonlinear
dynamics are assumed to be known precisely. Moreover, external
disturbances such as white noise, often neglected by the current
research, exist in almost every practical application. Most relevant
to this paper are the works (Das & Lewis, 2010, 2011; Hou, Cheng,
& Tan, 2009). Ref. (Hou et al., 2009) applied neural adaptive
control to leaderless consensus problem of first-order nonlinear
systems on undirected graphs. They also showed that the method
can be extended to higher-order systems using the backstepping
technique. As is well known, backstepping is a recursive design
procedure whose complexity increases drastically with the order
of the systems. In Das and Lewis (2010), cooperative tracking
problems was solved for first-order nonlinear systems with
unknown dynamics, and this result was generalized to second-
order nonlinear systems in Das and Lewis (2011).

Motivated by the above observations, this paper deals with
the cooperative tracking control problem of general higher-order
nonlinear systems on directed graphs with a time-varying active
leader, and thus further generalizes the results in Das and Lewis
(2010, 2011). Each follower node is a higher-order integrator
incorporatingwith unknown nonlinear dynamics and an unknown
external disturbance. The node dynamics can all be different. The
leader node is a higher-order nonautonomous nonlinear system
whose dynamics is unknown to all the follower nodes. This paper
proposes distributed neural adaptive controllers for networked
higher-order systems, which guarantee the ultimate boundedness
of the tracking errors.

Compared with Das and Lewis (2010, 2011), the main
contributions of this paper are threefold. First, the node dynamics
are extended to general higher-order nonlinear systems in the
Brunovsky form, which include first- and second-order systems as
special cases. Second, the requirement of graph topology is relaxed
such that the augmented graph has a spanning tree. Thismeans the
original graphmay be disconnected, as long as the leader node pins
into the proper nodes in each disconnected component. This is a
necessary condition and less stringent than strong connectedness.
Finally, fewer assumptions are made. Thus the controller design
is more flexible. It is worth mentioning that the above extensions
are nontrivial, since the node dynamics getmore involvedwith the
graph topology. Also note that Lemma 2 in Das and Lewis (2011),
which plays a fundamental role in the stability analysis, does not
work for the higher-order case. This results in a Lyapunov stability
analysis that is more complicated. In particular, two Lyapunov
equations are used in this paper, i.e., one for graph topology and
one for control design. This paper is also an improved work of
our preliminary results (Zhang & Lewis, 2010; Zhang, Lewis, & Qu,
2012).

2. Basic graph theory and notations

A graph is expressed by G = (V, E). V = {v1, . . . , vN} is
a nonempty set of nodes/agents and E ⊆ V × V is the set of
edges/arcs. (vi, vj) ∈ E means there is an edge from node i to
node j. The topology of a weighted graph is often represented by
the adjacency matrix A = [aij] ∈ RN×N , and aij > 0 if (vj, vi) ∈ E;
otherwise aij = 0. Throughout this paper, it is assumed that aii = 0
and the topology is fixed, i.e., A is time-invariant. A digraph is a

directed graph. Define di =
N

j=1 aij as the weighted in-degree of
node i and D = diag(d1, . . . , dN) ∈ RN×N as the in-degree matrix.
The graph Laplacianmatrix is L = [lij] = D−A. Let 1 = [1, . . . , 1]T
with appropriate dimension; then L1 = 0. The set of neighbors of
node i is denoted as Ni = {j|(vj, vi) ∈ E}. If node j is a neighbor of
node i, then node i can get information from node j, not necessarily
vice versa for directed graph. For undirected graph, neighbor is a
mutual relation. A direct path from node i to node j is a sequence
of successive edges in the form {(vi, vk), (vk, vl), . . . , (vm, vj)}. A
digraph has a spanning tree, if there is a node (called the root), such
that there is a directed path from the root to every other node in
the graph. A digraph is strongly connected, if for any ordered pair
of nodes [vi, vj] with i ≠ j, there is a direct path from node i to
node j.

Throughout this paper, the following notations are used. | · |

is the absolute value of a real number; ∥ · ∥ is the Euclidean
norm of a vector; ∥ · ∥F is the Frobenius norm of a matrix; tr{·}
is the trace of a matrix; σ(·) is the set of singular values of a
matrix, with the maximum singular value σ̄ (·) and the minimum
singular value σ(·); matrix P > 0 (P ≥ 0) means P is positive
definite (positive semidefinite); I denotes the identity matrix with
appropriate dimensions; and N = {1, . . . ,N}.

3. Problem formulation

Consider N(N ≥ 2) agents with distinct dynamics. Dynamics of
the ith (i = 1, . . . ,N) agent is described in the Brunovsky form

ẋi,m = xi,m+1, m = 1, . . . ,M − 1
ẋi,m = fi(xi)+ ui + ζi, m = M

(1)

where xi,m ∈ R is the mth state of node i; xi = [xi,1, . . . , xi,M ]
T

is the state vector of node i; fi(·) : RM
→ R is locally Lipschitz in

RM with fi(0) = 0, and it is assumed to be unknown; ui ∈ R is
the control input/protocol; and ζi ∈ R is an external disturbance,
which is unknown but bounded. Define xm = [x1,m, . . . , xN,m]

T .
Then one has
ẋm = xm+1, m = 1, . . . ,M − 1
ẋm = f (x)+ u + ζ , m = M
where f (x) = [f1(x1), . . . , fN(xN)]T , u = [u1, . . . , uN ]

T and ζ =

[ζ1, . . . , ζN ]
T . Specifically, when M = 3, x1, x2 and x3 can be

the global position vector, global velocity vector and global
acceleration vector, respectively.

The time-varying dynamics of the leader node, labeled 0, is
described by

ẋ0,m = x0,m+1, m = 1, . . . ,M − 1
ẋ0,m = f0(t, x0), m = M

(2)

where x0,m ∈ R is the mth state; x0 = [x0,1, . . . , x0,M ]
T is the state

vector; and f0(t, x0) : [0,∞)× RM
→ R is piecewise continuous

in t and locally Lipschitz in x0 with f0(t, 0) = 0 for all t ≥ 0 and
x0 ∈ RM , and it is unknown to all other nodes. System (2) is
assumed to be forward complete, i.e., for every initial condition,
the solution x0(t) exists for all t ≥ 0. In other words, there is no
finite escape time. The leader node dynamics (2) can be considered
as an exosystem that generates a desired command trajectory.

Define the mth order tracking error (or disagreement variable)
for node i (i ∈ N ) as δi,m = xi,m − x0,m. Let δm = [δ1,m, . . . , δN,m]

T ;
then δm = xm − x0,m, where x0,m = [x0,m, . . . , x0,m]

T
∈ RN . The

objective of this paper is to design distributed controllers for all
follower nodes, such that the tracking error δm converges to a small
neighborhoods of zero, for all m = 1, . . . ,M . This is illustrated
by the following definition, which extends the standard concept of
uniform ultimate boundedness (Khalil, 2002; Lewis, Yeşildirek, &
Liu, 1996) to cooperative control systems.

Definition 1 (Cooperative Uniform Ultimate Boundedness). For any
m (m = 1, . . . ,M), the tracking error δm is said to be cooperatively
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