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a b s t r a c t

In this paper we consider the infinite horizon H2/H∞ control problem for discrete-time time-varying
linear systems subject to Markov jump parameters and state-multiplicative noise. A stochastic version
of a bounded real lemma is firstly developed for a general class of discrete-time time-varying Markov
jump systems with state- and disturbance-multiplicative noise. By which we present a necessary and
sufficient condition for the solvability of the H2/H∞ control problem in terms of four coupled discrete-
time Riccati equations. Moreover, the obtained design is applied to a macroeconomic problem to verify
its effectiveness.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Based on Zames’ foundational work (Zames, 1981), Doyle,
Glover, Khargonekar, and Francis (1989) showed that theH∞ norm
of a transfer function is equivalent to the L2-induced norm of the
input–output operator with initial state zero. So far, H∞ control
has been one of the central issues in robust control literature; see
Petersen, Ugrinovskii, and Savkin (2000), Xu and Lam (2006) and
Zhou, Doyle, and Glover (1996). On the other hand, mixed H2/H∞

control for deterministic systems has also attracted considerable
attention and is now widely applied to various practical fields; see
Basar and Bernhar (1995) and Limebeer, Anderson, and Hendel
(1994). As for the stochastic case, the research of stochastic H∞

control can be traced back at least to Hinrichsen and Pritchard
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(1998) and Ugrinovskii (1998). In Hinrichsen and Pritchard (1998),
an infinite horizon H∞ control problem was tackled for a class
of stochastic Itô systems with state- and control-multiplicative
noise and a stochastic bounded real lemma (SBRL) was presented
for the first time in the form of linear matrix inequalities (LMIs).
Inspired by this work, Chen and Zhang (2004) addressed the
stochastic H2/H∞ control problem about stochastic Itô systems
with state-multiplicative noise and settled it for both the finite and
infinite horizon case, which, to some extent, may be viewed as a
stochastic counterpart of Limebeer et al. (1994). In the past two
decades, the stochastic H∞ and H2/H∞ control theories have been
well developed for continuous- and discrete-time linear control
systems with multiplicative noise. For the latest progress, a good
introduction can be found in Gershon, Shaked, and Yaesh (2005),
and interested readers are also referred to Dragan, Morozan, and
Shi (2002), Gershon and Shaked (2008), Gershon, Shaked, and
Berman (2007), Muradore and Picci (2005), and Zhang, Huang, and
Xie (2008), among others. Via carefully examining the existing
work, it can be found that although fruitful results have been
contributed to infinite horizonH2/H∞ control design,most of them
are focused on time-invariant systems.

Due to a great many applications of Markov jump systems, the
relevant research has become a very active issue in the control
community (Costa, Fragoso, & Marques, 2005; Fragoso & Rocha,
2006; Wang, Lam, & Liu, 2004). Currently, there exists a growing
interest in studying stochastic linear systems subject to both
independent random perturbations and Markov jumps; see the
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discussions of the linear quadratic optimization problem (Costa
& Wanderlei, 2007; Dragan & Morozan, 2004), eigenvalue sets
and convergence rate (Li, Zhou, Wang, & Duan, 2011), robust
stabilization and control problem (Dragan & Morozan, 2002; Xu &
Chen, 2005). In a recent monograph (Dragan, Morozan, & Stoica,
2010), the infinite horizon robust H∞ control problem has been
elaborately discussed for a broad class of discrete-time Markov
jump systems with multiplicative noise. However, to the best
of our knowledge, the topic on infinite horizon H2/H∞ control
remains unexplored for such dynamics. Compared with the sole
H∞ control, mixed H2/H∞ control may give consideration to both
the average performance and disturbance attenuation index of
the closed-loop system, and therefore appears more attractive in
practice (Du, Xie, Teoh, & Guo, 2005).

In this paper, we will handle the infinite horizon stochastic
H2/H∞ control problem, paralleling the work of Chen and Zhang
(2004), for discrete-time time-varying linear systemswithMarkov
jumpparameters and state-multiplicative noise. Roughly speaking,
time-varying systems can be utilized to model more realistic
dynamics and are also more challenging in mathematics than
time-invariant ones. Our first main result (Theorem 1) consists
of a SBRL for a class of discrete-time time-varying Markov jump
systems with state- and disturbance-multiplicative noise. As is
well known (e.g., see Dragan et al., 2010; Gershon et al., 2005),
the SBRL is a fundamental tool to investigate the H∞ control
and estimation problems for stochastic systems. The second main
result (Theorem 2) is dedicated to providing a necessary and
sufficient condition for the existence of an infinite horizon H2/H∞

controller bymeans of four coupleddiscrete-timeRiccati equations
(CDTREs). Since the system coefficients are allowed to be time-
varying, the obtained design takes that of the time-invariant
case as its special case. It is worth mentioning that a finite
horizon H2/H∞ control problem has been treated for analogous
systems with (x, u, v)-multiplicative noise (Hou, Zhang, & Ma,
2010). While in contrast to the finite horizon case, the infinite
horizon H2/H∞ controller is more difficult to achieve due to
the requirement of stabilizing the closed-loop system internally.
Hence, this research is by no means a trivial extension of Hou
et al. (2010) to the infinite horizon case. In addition, the efficiency
of our proposed technique is illustrated through an example
(Example 1) of amacroeconomic problem,where a comprehensive
comparison ismade among the optimalH2,H∞, andmixedH2/H∞

controllers.
The rest of this paper is organized as follows. Section 2 presents

some adequate preliminaries and useful definitions. Section 3 is
devoted to developing a SBRL for the discrete-time time-varying
systems with state- and disturbance-multiplicative noise. Based
on the obtained SBRL, Section 4 proceeds with the discussion of
the infinite horizon H2/H∞ control problem under the condition
of stochastic detectability. Finally, we end this paper in Section 5
with a brief concluding remark and some interesting topics that
remain open.

Notations. Rn: n-dimensional space with the usual Euclidean
norm ∥ · ∥; Rn×m: the space of all n × m real matrices with the
operator norm ∥ · ∥2; Sn: the set of all n × n symmetric matrices;
A > 0(≥ 0): A is a positive (semi-positive) definite matrix;
RN
n×m(S

N
n ): the set of all N sequences V = (V1, . . . , VN) with Vi ∈

Rn×m(Sn); SN+
n : the set of all N sequences V = (V1, . . . , VN)where

Vi ∈ Sn and Vi ≥ 0; A′: the transpose of a matrix (vector) A; In: the
n×n identitymatrix;Z+ := {0, 1, . . .} andZ1+ := {1, 2, . . .};D =

{1, 2, . . . ,N}; δ(·): the Kronecker function.

2. Definitions and preliminaries

On a given probabilistic space (Ω,F , P), we consider the
following discrete-time time-varying linear systems subject to

Markov jump parameters and multiplicative noises:
x(t + 1) = A0(t, ηt)x(t)+ G0(t, ηt)u(t)

+

r
k=1

[Ak(t, ηt)x(t)+ Gk(t, ηt)u(t)]wk(t),

z(t) = C(t, ηt)x(t), x(0) = x0 ∈ Rn, t ∈ Z+,

(1)

where x(t) ∈ Rn, u(t) ∈ Rnu and z(t) ∈ Rnz are the system
state, control input and system output, respectively. {w(t)|w(t) =

(w1(t), . . . , wr(t))′, t ∈ Z+} is a sequence of independent random
vectors, and the triple ({ηt}t∈Z+

, Pt ,D) is a time-varying Markov
chain with the transition probability matrix denoted by Pt =

(pt(i, j))N×N , in which pt(i, j) = P(ηt+1 = j|ηt = i). It is
unknown a priori when jumps will occur but the current mode of
ηt is measurable. Let H̃k be a σ -algebra defined by σ {ηt , w(s)|0 ≤

t ≤ k, 0 ≤ s ≤ k − 1}. In the case k = 0, we set H̃0 = σ {η0}.
l2(0,∞; Rm) represents the space of Rm-valued, nonanticipative
square summable stochastic processes {y(t, ω) : Z+ ×Ω → Rm

},
which are H̃k-measurable for all k ∈ Z+ and


∞

t=0 E∥y(t)∥2 <

+∞. It is clear that l2(0,∞; Rm) is a real Hilbert space with
the norm induced by the usual inner product: ∥y(·)∥l2(0,∞;Rm) =

∞

t=0 E∥y(t)∥2
 1

2 < +∞. For any T ∈ Z1+, l2(0, T ; Rm) may be
defined in a similar way.

Throughout this paper, we make four underlying assumptions.

Hypothesis 1. (A1) For each t ∈ Z+, the two σ -algebras
σ {w(0), . . . , w(t)} and σ {η0, . . . , ηt} are mutually indepen-
dent;

(A2) E[w(t)] = 0, E[w(t)w(s)′] = Irδ(t − s), t, s ∈ Z+;
(A3) The transition probability matrix Pt is nondegenerate and

inft∈Z+
πt(i) > 0 where πt(i) := P(ηt = i), i ∈ D;

(A4) All the coefficients of the considered systems are bounded
matrix-valued sequences with appropriate dimensions.

Firstly, we state the definitions of stabilization and detectability
(Dragan et al., 2010) that are essential in the subsequent
discussions.

Definition 1. Under Hypothesis 1, the zero state equilibrium of
discrete-time linear stochastic systems:

x(t + 1) = A0(t, ηt)x(t)+

r
k=1

Ak(t, ηt)x(t)wk(t) (2)

or (A0,A, P)(A := (A1, . . . , Ar), P := {Pt}t∈Z+
) is called strongly

exponentially stable in the mean square (SESMS) if there exist
β ≥ 1, q ∈ (0, 1) such that for any sequence of independent
random vectors {w(t)}t∈Z+

and any Markov chain satisfying (A1)
and (A2), there holds that for all t ≥ s ≥ 0, i ∈ D, x0 ∈ Rn,

E[∥Φ(t, s)x0∥2
|ηs = i] ≤ βqt−s

∥x0∥2,

where Φ(t, s) is the fundamental matrix solution of (2). Further,
system (1) is stochastically stabilizable if there exists a bounded
sequence {K(t, i)}t∈Z+

∈ Rn×nu(i ∈ D) such that the zero state
equilibrium of the closed-loop system:

x(t + 1) = [A0(t, ηt)x(t)+ G0(t, ηt)K(t, ηt)]x(t)

+

r
k=1

[Ak(t, ηt)x(t)+ Gk(t, ηt)K(t, ηt)]x(t)wk(t) (3)

is SESMS for any (x0, η0) ∈ Rn
× D, where u(t) = K(t, ηt)x(t) is

called a stabilizing feedback.
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