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A B S T R A C T

In zone-level crash prediction, accounting for spatial dependence has become an extensively studied
topic. This study proposes Support Vector Machine (SVM) model to address complex, large and multi-
dimensional spatial data in crash prediction. Correlation-based Feature Selector (CFS) was applied to
evaluate candidate factors possibly related to zonal crash frequency in handling high-dimension spatial
data. To demonstrate the proposed approaches and to compare them with the Bayesian spatial model
with conditional autoregressive prior (i.e., CAR), a dataset in Hillsborough county of Florida was
employed. The results showed that SVM models accounting for spatial proximity outperform the non-
spatial model in terms of model fitting and predictive performance, which indicates the reasonableness
of considering cross-zonal spatial correlations. The best model predictive capability, relatively, is
associated with the model considering proximity of the centroid distance by choosing the RBF kernel and
setting the 10% of the whole dataset as the testing data, which further exhibits SVM models’ capacity for
addressing comparatively complex spatial data in regional crash prediction modeling. Moreover, SVM
models exhibit the better goodness-of-fit compared with CAR models when utilizing the whole dataset
as the samples. A sensitivity analysis of the centroid-distance-based spatial SVM models was conducted
to capture the impacts of explanatory variables on the mean predicted probabilities for crash occurrence.
While the results conform to the coefficient estimation in the CAR models, which supports the
employment of the SVM model as an alternative in regional safety modeling.

ã2015 Elsevier Ltd. All rights reserved.

1. Introduction

Crash prediction model (CPM) is an essential tool in traffic
safety analysis. Numerous applications have been developed to
evaluate safety level of various types of road entities and to
examine effect of safety countermeasures. Recently, traffic crashes
are aggregated by a certain spatial scale and researchers usually
seek to relate safety to zone-level factors. One of the main
objectives of macro-level crash prediction analysis is to explain
observed cross-sectional variations in safety using zone-level
covariates at different spatial scales (e.g., states, counties, traffic
analysis zones, and census wards) (Washington et al., 2006;
Quddus 2008; Huang et al., 2010). These macro-level CPMs may aid
transportation agencies in more effectively incorporating safety
consideration into transportation planning and management
(Abdel-Aty et al., 2011; Huang et al., 2013; Xu and Huang, 2015).

In zonal crash prediction, accounting for spatial dependency
has become an extensively studied topic. Previous studies (i.e.,
Quddus 2008; Huang and Abdel-Aty 2010; Siddiqui et al., 2012;
Xu et al., 2014; Zeng and Huang, 2014a) found that traffic
crashes exhibit extensive spatial dependency across neighboring
zones. Research commonly seeks to address the issue of
unmeasured spatial correlations using spatial econometric
methods among the neighboring spatial units for two reasons:
(a) the collection of crash data observations associated with the
spatial units does not accurately reflect the nature of the
underlying process that generates the sample data, which might
induce measurement errors (Anselin, 2001); (b) the spatial
dimensions of socio-demographic, economic or regional activi-
ties may truly represent an important aspect in model
development and may help to improve the accuracy and
robustness of crash prediction and avoid underestimation of
standard errors for model parameters.

A key challenge associated with the consideration of spatial
dependence effects in CPMs is to address the massive amounts of
multi-dimensional spatial data found in crash prediction analyses.
Specifically, to gain a more precise estimation of the variability in
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parameters by considering more complex spatial proximity
structures, researchers have proposed a comprehensive investiga-
tion of different spatially neighboring structures for both road-
segment-level and area-wide analyses (i.e., Aguero-Valverde and
Jovanis, 2010; Wang et al., 2012). As in the study by Dong et al.
(2014), CPMs accounting for spatial correlation perform better
than non-spatial model and also model merely considering 0–1
first order adjacency-based proximity structure. A prevalent
approach employs Bayesian spatial model with conditional
autoregressive prior (i.e., CAR) to address the issue of unmeasured
spatial dependences. But it has been claimed to suffer from
selected limitations and fail to address complex and highly
nonlinear data (the curse of dimensionality) (Karlaftis and
Vlahogianni, 2011; Zeng and Huang, 2014b).

Support Vector Machine (SVM), a relatively new modeling
technique, is theoretically supposed to be useful and has been
employed in several studies (Yu and Abdel-Aty, 2013; Li et al.,
2012, 2008; Zhang and Xie, 2008). Yu and Abdel-Aty (2013)
constructed SVM models to compare with Bayesian logistic
regression model in real-time crash risk evaluation. The better
model predictive capability associated with SVM models implies
the existence of nonlinear relationship between the dependent
variables and explanatory variables which could not be
captured by the logistic regression models. Li et al. (2008)
investigated the potential of using an SVM model to evaluate
safety performance functions for motor vehicle crashes and
found that SVM models provide better goodness-of-fit than
negative binomial models. It was argued that SVM model has a
great ability to address classification problems while producing
fewer over-fitting problems and better generalization abilities.
The strength of SVM probably comes from its basis on structural
risk minimization, which provides a trade-off between hypoth-
esis space complexity and the quality of fitting the training data
(Vapnik, 1998). Byvatov et al. (2003) also found that SVMs are
able to efficiently address a substantial number of features due
to the exploitation of kernel functions, especially for high-
dimension data.

Given this new line of research activity, to the best of our
knowledge, little to no research has specifically worked on a fairly
thorough treatment of SVM in zonal crash prediction accounting
for spatial proximity effects. This motivates our interests to fill the
gap by utilizing SVM model to explore the spatial proximity effects
in crash prediction.

The major challenge associated with the SVM model lies in the
optimal input feature subset especially in complex and highly
multivariate prediction models because the choice of feature
subset influences the appropriate kernel parameters and vice versa
(Huang and Wang, 2006). Recent research has postulated that
feature selection becomes necessary for machine-learning tasks
when working with high-dimension data (Yu and Liu, 2003).
Correlation-based Feature Selector (CFS) has been developed for
selecting a list of candidate variables in SVMs, which may improve
model fitness as well as predictive performance (Hall, 1999). Use of
CFS method has greatly expanded the potential applications of the
SVM model.

The objective of this study is to explore the possibility of using
SVM models and CFS method for macro-level crash frequency
analysis with comparatively complex spatial data structure. SVM
models with radial-basis function (RBF) kernel and linear kernel
are developed. Using a dataset of Hillsborough county of Florida,
the model fitness and predictive performance are compared with
the CAR models. Moreover, since the SVM is unable to contain a
specified function to identify the effects of explanatory variables, a
comprehensive sensitivity analysis is carried out to capture the
impacts of explanatory variables on the mean predicted probabili-
ties of crash occurrence.

2. Methodology

SVM model can be used to relate various zone-level risk factors
to crash occurrence, while accounting for possible spatial
proximity among adjacent zones. The spatial weight features are
introduced to reflect the overall spatial proximity relationships of
the traffic analysis zones (TAZs), which are considered as input
vectors into a SVM model in improving the predictive accuracy in
this study. For comparison purposes, we also develop CAR model
based on the same dataset. They are briefly described in this
section, followed by the presentation of the goodness of fit
measures for model comparison.

3. SVM model

For this study, the n-SVM is employed, which has been
proposed by Schölkopf et al. (2000). Specifically, the data is
separated into a training set and a testing set. The n-SVM model
produces a learning model based on the training set and
subsequently makes predictions on the testing set. The n-SVM
model learns the relations between the TAZs-level crash frequency
and explanatory variables based on the training dataset.

Assume the training input is defined as vectors xðiÞ 2 RIn for
i ¼ 1; :::; N, which represents the full set of zone-level contributing
factors of each TAZ including road and traffic characteristics, trip
production/attraction, and demographic and socioeconomic, and
the training output is defined as yðiÞ 2 R1 for i ¼ 1; :::; N, which
represents the crash frequency that occurred in the TAZ. The

n-SVM maps x(i) into a feature space Rh > In with higher
dimension using a function FðxðiÞÞ to linearize the nonlinear
relation between x(i) and y(i). The estimation function of y(i) is

ŷ ¼ f ðxÞ ¼ wTFðxÞ þ b

where w 2 Rh and b 2 R1 are coefficients. Schölkopf et al. (2000)
showed that the coefficients can be determined by solving the
following optimization problem:

MinZðw; e; ji; j�i Þ ¼ 1
2
wTw þ Cfve þ 1

N
S
N

i¼1
ðji þ j�i Þg

subject to

wTFðxðiÞÞ þ b � yðiÞ � e þ ji8i ¼ 1; :::; N

yðiÞ � wTFðxðiÞÞ � b � e þ j�i 8i ¼ 1; :::; N

ji; j�i � 0 8i ¼ 1; :::; N

e � 0

where ji; j�i are slack variables, C is a regularization parameter, and
n is a second parameter. For each x(i) the allowable error is e. Slack
variables ji; j�i capture the errors above e and are penalized in the
objective function via a regularization constant C.

Therefore, the estimated function of y(i) becomes

ŷ ¼ f ðxÞ ¼ S
N

i¼1
ða�

i � aiÞFðxðiÞÞTFðxÞ þ b

¼ S
N

i¼1
ða�

i � aiÞ � KðxðiÞ; xðjÞÞ þ b

where KðxðiÞ; xðjÞÞ ¼ FðxðiÞÞTFðxðjÞÞ is the kernel function, ai and
a�
i ares. In this study, the RBF kernel and linear kernel were

considered:
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