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a b s t r a c t

This note extends to the continuous-time case the ‘‘tube-based’’ approach for the design of discrete-time
robust model predictive control (MPC) algorithms developed in Mayne, Seron, and Raković (2005). This
extension is of interest in view of the simplicity and popularity of the method as well as of the industrial
relevance of continuous-time implementations of MPC. The proposed robust control law is composed of
two terms: (1) a sampled-data MPC control law and (2) a continuous-time state feedback term.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The wide popularity of model predictive control (MPC) in both
academia and industry has motivated the development of robust
MPC algorithms, capable of dealing with model uncertainties,
parameter variations, and external disturbances; see for example
Limon et al. (2009) and references therein. Among the many
solutions proposed, the ‘‘tube-based’’ approach for linear systems
described in Mayne et al. (2005) is one of the most elegant
and potentially applicable, since it implies on-line computations
comparable with those required by standard (nominal) MPC
algorithms. However, most of the robust MPC algorithms available
nowadays (including Mayne et al., 2005) are based on a discrete-
time formulation of the plant under control, while in industrial
practice it is often preferred to resort to a continuous-time
description of the system and to use a MPC that operates with
piecewise constant control signals; see e.g. Chen and Allgöwer
(1998) and Magni and Scattolini (2004). Notable exceptions of
robust MPC algorithms for continuous-time systems are reported
in Raff, Sinz, and Allgöwer (2008) and Rubagotti, Raimondo,
Ferrara, and Magni (2011).

For these reasons, in this paper the robust MPC algorithm
developed in Mayne et al. (2005) is extended to linear continuous-
time systems affected by an unknown, but bounded disturbance.
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The main contribution consists in maintaining the simplicity of
Mayne et al. (2005) and, at the same time, allowing for the use of
a continuous-time plant model. To achieve this twofold objective,
a robust MPC control law made up of two terms is proposed: the
first one is a piecewise constant term computed as the solution of
an MPC problem for the nominal system, while the second one is a
continuous-time linear feedback law fed by the difference between
the true and nominal state trajectories.
Notation. A matrix is Schur if all its eigenvalues lie in the interior
of the unit circle, while it is Hurwitz if all its eigenvalues
have negative real part. The symbol ⊕ denotes the Minkowski
sum (Mayne et al., 2005); Bδ(0) ⊂ Rn is a ball of radius δ. The
distance of a point z froma setX is dist(z, X) := inf{∥z−x∥|x ∈ X};
λM(·) and λm(·) are the maximum and the minimum eigenvalues
of a matrix, respectively.

2. Preliminaries

Consider the linear continuous-time system

ẋ(t) = Ax(t) + Bu(t) + w(t) (1)

where x(t) ∈ X ⊆ Rn and u(t) ∈ U ⊆ Rm are the state and input
variables, respectively, andw(t) ∈ W ⊆ Rn is a bounded unknown
disturbance. The sets X, U, W are convex and contain the origin.
From (1), the nominal system can be obtained by neglecting the
disturbance w(t), that is

˙̂x(t) = Ax̂(t) + Bû(t) (2)

where x̂(t) ∈ Rn and û(t) ∈ Rm are the nominal state and input
variables, respectively.
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The robust control law to be derived for system (1) is assumed
to take the form

u(t) = û(t) + Kc(x(t) − x̂(t)) (3)

where Kc is a feedback gain such that Acl
c = A + BKc is Hurwitz.

As for the term û in (3), it is assumed to be a piecewise constant
signal. More specifically, letting {tk}, k ∈ I≥0, be the set of sampling
instants such that tk+1 − tk = T for all k, the aim of this paper
is to propose a robust MPC scheme providing a sampled nominal
control law û(t) = ûk for all t ∈ [tk, tk+1) such that the closed-
loop system (1)–(3) enjoys convergence and stability properties.
For simplicity, in the following the notation x̂k = x̂(tk) for all
k ∈ I≥0 is also used. From (1)–(3), letting z(t) = x(t) − x̂(t) it
follows that

ż(t) = Acl
c z(t) + w(t) (4)

and, sinceAcl
c is Hurwitz, it is possible to define the robust positively

invariant (RPI) set Z for (4) (see e.g. Rakovic & Kouramas, 2007)
such that, if z(t0) ∈ Z andw(t) ∈ W for all t ≥ t0, then z(t) ∈ Z for
all t ≥ t0. In what follows, it is assumed that Z ⊂ X and KcZ ⊂ U,
and that X̂ = X ⊖ Z and Û = U ⊖ KcZ are neighborhoods of the
origin. As in Mayne et al. (2005), it is assumed that the non-empty
sets X̂ and Û exist. Note that they depend on the feedback gain Kc
which is, in this respect, a design parameter to be selected properly.

An auxiliary sampled control law for the nominal system,
together with its properties, is first derived. To this end, note
that, given x̂k = x̂(tk) and the sampled control variable ûk, the
continuous-time inter-sampling solution of (2) is

x̂(t) = Azoh(t − tk)x̂k + Bzoh(t − tk)ûk, t ∈ [tk, tk+1) (5a)

where Azoh(τ ) = eAτ and Bzoh(τ ) =
 τ

0 eA(τ−η)Bdη. Moreover, the
discrete-time system representing (2) in the sampling instants is
described by

x̂k+1 = Adx̂k + Bdûk (5b)

where Ad = Azoh(T ), Bd = Bzoh(T ).
Now assume that we know a sampled (auxiliary) control law

ûk = Kdx̂k for the nominal system (2), such that Acl
d = Ad + BdKd is

Schur. Given a symmetricmatrix Q̃ > 0 and constants γ > 0, γ2 >

0 where γ < λm(Q̃ ), let the symmetric matrix Π be the unique
positive definite solution of the following Lyapunov equation:

(Acl
d )

TΠAcl
d − Π + Q̄ = 0

where Q̄ =
 T
0 (Acl

zoh(η))T Q̃ Acl
zoh(η)dη+γ2I and Acl

zoh(η) = Azoh(η)+
Bzoh(η)Kd. Then, from Lemma 1 in Magni and Scattolini (2004),
there exist constants T ∈ [0, +∞) and c > 0 such that the set

X̂f (Kd, T ) = {x̂ | ∥x̂∥2
Π ≤ c}

satisfies, for all x̂k ∈ X̂f and for all t ∈ [tk, tk+1),

x̂(t) ∈ X̂, Kdx̂k ∈ Û (6a)

∥x̂k+1∥
2
Π − ∥x̂k∥2

Π ≤ −γ

 tk+1

tk
∥x̂(η)∥2dη − γ2∥x̂k∥2 (6b)

where x̂(t) and x̂k+1 are computed as in (5a) and (5b), respectively,
with ûk = Kdx̂k.

A practical computational procedure consists in fixing the
sampling period T according to well assessed criteria in digital
control (Åström & Wittenmark, 1984). Then, a stabilizing gain Kd
can be obtained with any synthesis technique and the matrix Π

can be computed. Finally, the constant c can be derived by fixing
the region X̂f where (6a) and (6b) are fulfilled.

3. The robust MPC problem formulation

Define the sequence û[k:k+N−1] = {ûk, . . . , ûk+N−1} of sampled
inputs. Given x̂k as the initial condition for (2) at time tk, the
nominal MPC problem P̂N(x̂k) can be stated as

Ĵ∗N(x̂k) = min
û[k:k+N−1]

JN(x̂k, û[k:k+N−1]) (7)

subject to system (2) and

ûh ∈ Û, h = k, . . . , k + N − 1 (8a)

x̂(t) ∈ X̂, t ∈ [tk, tk + NT ) (8b)

x̂k+N ∈ X̂f . (8c)

The cost function JN is

JN(x̂k, û[k:k+N−1]) =

 tk+NT

tk
(∥x̂(t)∥2

Q + ∥û(t)∥2
R)dt

+ ∥x̂(tk + NT )∥2
Π (9)

=

k+N−1
h=k

l(x̂h, ûh) + ∥x̂k+N∥
2
Π (10)

where Q = Q ′ > 0 and R = R′ > 0 are such that

λM(Q ) < γ , T∥Kd∥
2λM(R) < γ2 (11)

and γ , γ2 are chosen as defined above.
Recalling that û(t) is constant over each sampling interval, the

‘‘stage cost’’ l(x̂h, ûh) in (10) is given by

l(x̂h, ûh) =

 th+1

th
∥x̂(η)∥2

Q dη + T∥ûh∥
2
R. (12)

Let X̂N denote the set of states x̂k such that the problem P̂N(x̂k)
admits a solution.

In P̂N(x̂k) the evolution of x̂k is independent of x(t) (i.e., a
feasible choice is to let x̂k evolve according to (2) where ûk is given
by the solution to (7)), so that the resulting nominal control input is
independent of the real state evolution. To avoid this, the algorithm
developed in Mayne et al. (2005) implies that also x̂k is a decision
variable, while an additional constraint must guarantee that x̂k lies
in the neighborhood Z of the measured state x(t). Therefore, the
problem P̂N(x̂k) is modified accordingly and the problem P (x(tk))
to be solved at time tk is

J∗N(x(tk)) = min
x̂k,û[k:k+N−1]

JN(x̂k, û[k:k+N−1]) (13)

subject to system (2), constraints (8) and the additional one

x(tk) − x̂k ∈ Z. (14)

The optimal solution to P (x(tk)) is the pair (x̂k/k, û[k:k+N−1]/k), and
x̂(t/tk), t ∈ [tk, tk + NT ], is the solution to (5) obtained with x̂k/k
as initial condition and û[k:k+N−1]/k as input sequence; furthermore
x̂h/k = x̂(th/tk) for h = k, . . . , k + N .

For notational simplicity, define ûk+N/k = Kdx̂k+N/k and, for
t ∈ [tk +NT , tk + (N + 1)T ], x̂(t/tk) = Acl

zoh (t − (tk + NT )) x̂k+N/k.
We denote with XN the set of states x(tk) such that PN(x(tk))

admits a solution.
According to (3), the control law for the perturbed system (1),

for t ∈ [tk, tk+1), is given by

u(t) = ûk/k + Kc(x(t) − x̂(t/tk)). (15)

As inMayne et al. (2005), the on-line computational burden related
to the solution of PN(x(tk)) is only slightly heavier than the one
required by standard MPC. In fact, it is just necessary to enlarge
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