Contents lists available at ScienceDirect





journal homepage: www.elsevier.com/locate/aap

# Methodological guidelines for developing accident modification functions



## Rune Elvik<sup>a,b,\*</sup>

<sup>a</sup> Institute of Transport Economics, Gaustadalleen 21, NO-0349 Oslo, Norway <sup>b</sup> Department of Civil Engineering, Aalborg University, Sofiendalsvej 11, DK-9210 Aalborg SV, Denmark

#### ARTICLE INFO

Available online xxx

Article history: Received 9 January 2015 Received in revised form 7 March 2015 Accepted 28 March 2015

Keywords: Accident modification function Methods Guidelines Road safety Evaluation studies

#### ABSTRACT

This paper proposes methodological guidelines for developing accident modification functions. An accident modification function is a mathematical function describing systematic variation in the effects of road safety measures. The paper describes ten guidelines. An example is given of how to use the guidelines. The importance of exploratory analysis and an iterative approach in developing accident modification functions is stressed. The example shows that strict compliance with all the guidelines may be difficult, but represents a level of stringency that should be strived for. Currently the main limitations in developing accident modification functions are the small number of good evaluation studies and the often huge variation in estimates of effect. It is therefore still not possible to develop accident modification functions for very many road safety measures.

© 2015 Elsevier Ltd. All rights reserved.

## 1. Introduction

There is a growing understanding of the fact that the effects of road safety measures vary systematically (Hauer et al., 2012). It is therefore not always very informative to state these effects in terms of a single point estimate. An accident modification function can provide a more informative and precise description of effects, by statistically modelling variation in effects as a function of one or more independent variables.

Developing accident modification functions is, however, not easy and requires careful attention to the quality of evaluation studies and to whether the distribution of estimates of effect in these studies displays a systematic pattern. The objective of this paper is to propose methodological guidelines for developing accident modification functions. The guidelines address the following questions:

- 1. How should studies serving as the basis for developing an accident modification function be selected?
- 2. What types of preparatory analyses are required before starting to develop an accident modification function?
- 3. How can independent variables in an accident modification function be identified?
- 4. How can outlying data points be identified?

- 5. How can the most suitable mathematical form of an accident modification function be determined?
- 6. How can one decide whether a single or more than one accident modification function best fits the data?
- 7. How can the quality of an accident modification function be evaluated?
- 8. How can the effects of analytic choices made when developing an accident modification function be evaluated (in terms of sensitivity analysis)?
- 9. How can heteroscedastic data best be analysed when developing an accident modification function?
- 10. How can accident modification functions be updated?

Ten guidelines addressing these issues are proposed. Each guideline is illustrated by an example showing how to use the guideline. All examples refer to studies of the effects on accidents of speed enforcement. The guidelines proposed are listed in Table 1. In the following sections, each guideline will be presented in detail.

### 2. Classify, code and select studies

The first step in developing an accident modification function is to identify the studies that will serve as a basis for developing the function. A systematic literature survey should be made to identify relevant studies. Once relevant studies have been identified, they should be classified according to study design and how well they control for potentially confounding factors. This is an essential

<sup>\*</sup> Correspondence address: Institute of Transport Economics Gaustadalleen 21, NO-0349 Oslo, Norway. Tel.: +47 48943353; fax: +47 22 609200.

#### Table 1

Methodological guidelines for developing accident modification functions.

| Guidelines                              | Analysis required to comply with guidelines                                                                                                                         | Justification of guidelines                                                                                                         |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1. Classify, code and                   | Classify studies by study design (see Table 2). Do not mix studies employing                                                                                        | Studies employing different designs do not control for the                                                                          |
| select studies                          | size                                                                                                                                                                | studies employing different designs may be more influenced                                                                          |
|                                         |                                                                                                                                                                     | by confounding than an AMF based on studies employing                                                                               |
| 2. Perform                              | The potential presence of publication bias should be tested for. The relative                                                                                       | An AMF influenced by publication bias will be biased. AMFs                                                                          |
| preparatory                             | contribution of systematic variation in estimates of effect to overall variance                                                                                     | should not be developed if publication bias is indicated. An                                                                        |
| allalysis                               | for                                                                                                                                                                 | this only makes sense if systematic variation makes a                                                                               |
|                                         |                                                                                                                                                                     | predominant contribution to the overall variation in estimates                                                                      |
|                                         |                                                                                                                                                                     | potentially confounding variables                                                                                                   |
| 3. Identify                             | At least one independent variable should be identified. Independent variables                                                                                       | An AMF should have at least one independent variable.                                                                               |
| variables                               | may either refer to the measure itself of the context of its use                                                                                                    | measure or the context of its use                                                                                                   |
| 4. Identify outlying                    | Plot data points in a cumulative residuals plot, based on a preliminary AMF, to                                                                                     | An outlying data point may decisively influence the                                                                                 |
| data points                             | locate potentially outlying data points. Outlying data points should be omitted                                                                                     | single data point should determine the shape of a function                                                                          |
| E. I. de antifer als a la set           |                                                                                                                                                                     | fitted to, for example, 40-50 data points                                                                                           |
| 5. Identify the best fitting functional | A systematic testing of various functional forms, such as linear, power,<br>exponential etc. should be performed in order to identify the best fitting              | An AMF can have different functional forms, such as linear,<br>power, exponential, etc. Exploratory testing is needed to            |
| form                                    | functional form                                                                                                                                                     | identify the best fitting functional form                                                                                           |
| 6. One or more<br>functions             | A careful examination of the residual terms of an AMF can give hints that two or<br>more AMFs are needed to adequately summarise variation in the effects of a      | adequately summarised by means of a single AMF. If a more                                                                           |
|                                         | measure                                                                                                                                                             | precise description of effects can be obtained by developing                                                                        |
| 7. Evaluate accident                    | AMF should be evaluated in terms of predictive performance, explanatory value.                                                                                      | more than one AMF, this should be done<br>Unless an AMF fits guite well to the data, it cannot be applied                           |
| modification                            | and distribution of residual terms                                                                                                                                  | to predict the effects of a road safety measure. Several criteria                                                                   |
| 8. Perform sensitivity                  | A sensitivity analysis should be made to assess the effects of analytic choices                                                                                     | should be applied to assess the quality of an AMF<br>When developing an AMF analytic choices are made about                         |
| analysis                                | made when developing an AMF                                                                                                                                         | which studies to include, whether to develop one or more                                                                            |
|                                         |                                                                                                                                                                     | AMFs, the mathematical form of the AMF, and possibly other<br>items. A sensitivity analysis tests how results are influenced by     |
|                                         |                                                                                                                                                                     | these choices                                                                                                                       |
| 9. Decide on<br>treatment of            | Individual estimates of effect vary in statistical precision. This very often creates<br>unequal variance (beteroscedasticity) across the range covered by the data | In heteroscedastic data, any function will often fit well to the<br>part of the data characterised by small variance, but poorly to |
| heteroscedasticity                      |                                                                                                                                                                     | the part of the data characterised by large variance. One                                                                           |
|                                         |                                                                                                                                                                     | should assess options for minimising this problem, although it may be impossible to avoid it entirely                               |
| 10. Update accident                     | A routine for updating AMFs should be established, enabling a decision to made as                                                                                   | AMFs should be periodically updated. When an AMF is                                                                                 |
| modification<br>function                | to whether an updated AMF should retain the original functional form or adopt a new functional form                                                                 | updated, rules should be established for either keeping its<br>original mathematical form or changing the mathematical              |
| ranction                                |                                                                                                                                                                     | form of the function. If new data points do not fit well to any                                                                     |
|                                         |                                                                                                                                                                     | function, possible reasons for this should be examined                                                                              |

## Table 2

Classification of road safety evaluation studies by design and control for confounding factors.

| Main category of study design                    | Versions of study design by level of control for confounding factors                                                                                                                                                                                                                                                                                                                   | Rating for study quality<br>(within main group) |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Randomised controlled trials (experiments)       | Randomised controlled trial demonstrating pre-trial equivalence of groups and controlling for treatment implementation, attrition bias and unintended effects                                                                                                                                                                                                                          | High                                            |
|                                                  | Randomised controlled trial demonstrating or controlling for some but not all of the factors listed above                                                                                                                                                                                                                                                                              | Medium                                          |
|                                                  | Randomised controlled trials with evidence of systematic differences between treatment group and control group                                                                                                                                                                                                                                                                         | Low                                             |
| Before-and-after studies<br>(observational)      | Before-and-after studies controlling for regression-to-the-mean, long-term trends and changes in traffic volume not induced by the measure                                                                                                                                                                                                                                             | High                                            |
|                                                  | Before-and-after studies controlling for some, but not all of the factors listed above                                                                                                                                                                                                                                                                                                 | Medium                                          |
|                                                  | Simple before-and-after studies not controlling for any confounding factors                                                                                                                                                                                                                                                                                                            | Low                                             |
| Case-control studies                             | Case-control studies controlling for self-selection of cases and/or controls and important known risk factors by means of multivariate analysis                                                                                                                                                                                                                                        | High                                            |
|                                                  | Case-control studies controlling partly for self-selection bias and for some but not all known important                                                                                                                                                                                                                                                                               | Medium                                          |
|                                                  | Simple case-control studies not controlling for potentially confounding factors or simple case-series                                                                                                                                                                                                                                                                                  | Low                                             |
| Cross-sectional studies –<br>multivariate models | Multivariate models not known to be influenced by any of the following potential sources of error: small samples or low mean values; bias due to aggregation or averaging; outlying data points; inclusion of endogenous variables; co-linearity among independent variables; omitted variable bias; wrong functional form; inappropriate model form; inappropriate dependent variable | High                                            |
|                                                  | Multivariate models not known to be influenced by most of the potential sources of error listed above<br>Multivariate models known to be influenced by one or more of the potential sources of error listed above                                                                                                                                                                      | Medium<br>Low                                   |

Download English Version:

https://daneshyari.com/en/article/6965622

Download Persian Version:

https://daneshyari.com/article/6965622

Daneshyari.com