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a  b  s  t  r  a  c  t

The  application  of  finite  mixture  regression  models  has  recently  gained  an  interest  from  highway  safety
researchers  because  of its  considerable  potential  for addressing  unobserved  heterogeneity.  Finite  mix-
ture models  assume  that the  observations  of  a sample  arise  from  two or  more  unobserved  components
with  unknown  proportions.  Both  fixed  and  varying  weight  parameter  models  have  been  shown  to be
useful  for explaining  the  heterogeneity  and the  nature  of  the  dispersion  in  crash  data.  Given  the  superior
performance  of  the finite  mixture  model,  this  study,  using  observed  and  simulated  data,  investigated
the  relative  performance  of  the  finite  mixture  model  and  the  traditional  negative  binomial  (NB)  model
in terms  of hotspot  identification.  For  the  observed  data, rural  multilane  segment  crash  data  for  divided
highways  in  California  and  Texas  were  used.  The  results  showed  that the  difference  measured  by the  per-
centage  deviation  in  ranking  orders  was  relatively  small  for this  dataset.  Nevertheless,  the  ranking  results
from  the  finite  mixture  model  were  considered  more  reliable  than  the  NB  model  because  of  the  better
model  specification.  This  finding  was  also  supported  by  the simulation  study  which  produced  a  high
number  of  false  positives  and  negatives  when  a mis-specified  model  was  used  for  hotspot  identification.
Regarding  an  optimal  threshold  value  for identifying  hotspots,  another  simulation  analysis  indicated  that
there is a discrepancy  between  false  discovery  (increasing)  and  false  negative  rates  (decreasing).  Since
the  costs  associated  with  false  positives  and false  negatives  are  different,  it is  suggested  that  the  selected
optimal  threshold  value  should  be  decided  by considering  the  trade-offs  between  these  two  costs  so  that
unnecessary  expenses  are  minimized.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The identification of accurate crash hotspots has been an impor-
tant research topic in highway safety because it directly affects the
efficient use of resources for safety improvements. Identifying a
safe site as hazardous or identifying an unsafe site as safe could
result in inefficient investments and additional loss of lives. While a
hotspot, also referred to as a blackspot (Maher and Mountain, 1988;
Elvik, 2007), site with promise (Hauer, 1996; Hauer et al., 2002), or
site with high potential for safety improvement (Persaud, 1999),
can be generally defined as a location (roadway segment, inter-
section or interchange) with high crash risk, it has been defined in
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many different ways depending on how to measure the crash risk at
a particular location. For example, Hakkert and Mahalel (1978) pro-
posed that a hotspot be defined as a site that has a crash frequency
which is significantly higher than expected at some prescribed level
of significance. McGuigan (1981) proposed the use of potential for
accident reduction, as the difference between the observed and
expected number of crashes at a site given exposure. More recently,
Elvik (2008) proposed a theoretical definition of a hotspot as being
any location that has a higher expected number of accidents than
other similar locations as a result of local risk factors.

A naïve approach to identifying hotspots is to rank locations
based on their observed accident frequencies. However, because of
the rare and random nature of accident occurrences, this approach
tends to be very sensitive to random variations. Miaou and Song
(2005) illustrated the limitation associated with the naïve or raw
crash-risk approach in ranking using simple simulation procedures.
To better address the random fluctuation, researchers have used
statistical modeling-based approaches that apply random effect or
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Bayesian methods and compared their relative performances in
identifying hotspots (Miranda-Moreno et al., 2005; El-Basyouny
and Sayed, 2006). Miranda-Moreno et al. (2005), for example,
pointed out that various models and ranking criteria can lead
to different lists of hazardous locations. In order to evaluate the
performance of different hotspot identification methods, Cheng
and Washington (2008) developed four new evaluation tests and
applied them to select the most appropriate hotspot identification
method among the crash count ranking, the crash rate ranking, the
crash reduction potential, and the empirical Bayes (EB) method. In
their subsequent papers (Cheng et al., 2010a,b), they also applied
those tests to answer the question regarding which kind of crite-
ria (crash counts vs. crash rates or crash counts vs. crash reduction
potential) should be employed to identify hotspots. While Cheng
and Washington (2008) and Montella (2010) showed that the EB
approach is the most consistent and reliable method for identify-
ing hotspots based on innovative robust evaluation criteria, Huang
et al. (2009) explained an essential theoretical advantage of the
full Bayesian (FB) approach over the EB approach. Using Singapore
intersection crash data, they found that the FB hierarchical model
significantly outperformed the EB approach in correctly identifying
hotspots. In the light of their work, we also adopted the FB approach
for this study.

Although many alternative statistical models and ranking crite-
ria are available in the literature for identifying hotspots in highway
safety analyses, the main difficulty arises from the inability to dif-
ferentiate between sites that are truly high risk from those that
happen to have experienced random fluctuations during a period
of observation (Cheng and Washington, 2005). In this respect,
some researchers have recently adopted epidemiological criteria,
such as “sensitivity” or “specificity”3 to compare different statis-
tical models or ranking criteria for identifying hotspots (Cheng
and Washington, 2005; Miranda-Moreno, 2006; Elvik, 2008). These
criteria can provide information about “false positives” (identifying
a safe site as a hotspot) and “false negatives” (identifying a hotspot
as a safe site). These criteria along with others will also be used
in this paper to compare the relative performance of alternative
models for identifying hotspots.

During the past few years, many methodological innovations
in the development of statistical models have been made for ana-
lyzing vehicle crash data to overcome the overdispersion problem.
Various types of crash prediction models used by highway safety
analysts are well summarized in Lord and Mannering (2010) and
more recently in Mannering and Bhat (2014). Among them, appli-
cations of a finite mixture regression model have gained an interest
from highway safety researchers because of its considerable poten-
tial for addressing unobserved heterogeneity (Park and Lord, 2009;
El-Basyouny and Sayed, 2010; Zou et al., 2013, 2014). Finite mixture
models assume that the observations of a sample arise from two or
more unobserved components with unknown proportions, which
allows a great modeling flexibility over traditional single aggregate
models. For example, using urban 4-legged signalized intersection
crash data in Toronto, Park and Lord (2009) showed the possible
existence of two distinct sub-populations in the data, each hav-
ing different regression coefficients and degrees of over-dispersion,
and recommended that transportation safety analysts use finite
mixture models over a traditional single aggregate model, espe-
cially when the data are suspected to belong to different groups.
Zou et al. (2013) demonstrated the advantages of the finite mixture
model with varying weight parameters over a fixed weight param-
eter model using two datasets, the same data described in Park
and Lord (2009) and 4-lane undivided rural segments in Texas. In

3 Sensitivity = number of det ected hotspots
number of true hotspots

; Specificity = number of det ected non−hotspots
number of true non−hotspots

.

short, both fixed and varying weight parameter finite mixture mod-
els have been shown to be useful for explaining the heterogeneity
and the nature of the dispersion in crash data.

Given the superior performance of finite mixture models for
vehicle crash data analysis, there is a need to investigate whether
or not this type of model would result in important differences
in various highway safety analyses as compared to the commonly
used models, such as the negative binomial (NB) regression model.
Therefore, the objectives of this study are, first, to investigate
the relative performance of two  alternative models (i.e., the two-
component finite mixture of NB regression model (FMNB-2) and
the NB regression model) in terms of hotspot identification, and
second, to demonstrate what the consequences will be if a mis-
specified model is used for hotspot identification. Both empirical
and simulation data were used to achieve these objectives.

2. Finite mixture of NB regression model

This section describes the model structure and parameter esti-
mation method of K-component finite mixture of negative binomial
(NB) regression models (referred to as FMNB-K). More details
and general structure of finite mixture models can be found in
McLachlan and Peel (2000) and Früwirth-Schnatter (2006).

2.1. Model structure of FMNB-K

The underlying assumption of finite mixture of regression mod-
els is that there are a finite number (K) of unobservable categories of
observations and the heterogeneity arises from different values of
regression coefficients caused by missing variables. The probability
density function, mean and variance of the FMNB-K are expressed
as follows:
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where,

yi is a random variable of ith observation (i = 1,2,. . .n);
wk is the weight of component k which Sum to 1 (

∑K
k=1wk = 1);

�i,k = exp(xi�k) is the mean of component k;
xi is a vector of covariates;
�k and �k are the regression coefficients and the dispersion param-
eter of the NB;
distribution for component k; and
� = {(�1, . . .,  �k), (�1, . . .,  �k), (w1, . . .,  wK )} is a vector of all
unknown parameters.

It can be seen that when �k = 0 in each component the FMNB-K
model reduces to the finite mixture of Poisson regression models
(FMP-K). The FMNB models, therefore, allow for additional het-
erogeneity within components not captured by the covariates. If
additional heterogeneity is present within the components, the
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