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a  b  s  t  r  a  c  t

In  this  paper  a  unified  methodology  is presented  for  the  modelling  of  the  evolution  of  road  safety  in
30  European  countries.  For  each  country,  annual  data  of  the  best  available  exposure  indicator  and  of
the number  of  fatalities  were  simultaneously  analysed  with  the  bivariate  latent  risk  time  series  model.
This  model  is  based  on the  assumption  that  the amount  of  exposure  and  the  number  of fatalities  are
intrinsically  related.  It captures  the  dynamic  evolution  in  the  fatalities  as  the  product  of the  dynamic
evolution  in  two latent  trends:  the trend  in  the fatality  risk  and  the  trend  in  the  exposure  to  that  risk.
Before  applying  the  latent  risk  model  to the  different  countries  it was  first  investigated  and  tested  whether
the  exposure  indicator  at hand  and  the  fatalities  in  each  country  were  in  fact  related  at  all.  If they  were,
the latent  risk  model  was  applied  to that  country;  if not,  a univariate  local  linear  trend  model  was  applied
to  the  fatalities  series  only,  unless  the  latent  risk  time  series  model  was  found  to  yield  better  forecasts
than  the  univariate  local  linear  trend  model.  In either  case,  the  temporal  structure  of  the  unobserved
components  of the  optimal  model  was established,  and  structural  breaks  in  the  trends  related  to  external
events  were  identified  and  captured  by  adding  intervention  variables  to  the  appropriate  components  of
the model.  As a  final  step,  for  each  country  the  optimally  modelled  developments  were  projected  into
the  future,  thus  yielding  forecasts  for  the  number  of fatalities  up to  and  including  2020.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The temporal evolution of the number of accidents and victims
(fatalities, severely injured, injured) is a major topic of interest in
many road safety studies (see, e.g., COST 329, 2004; Lassarre et al.,
2012; Commandeur et al., 2013). These quantities are counted on
a monthly or yearly basis in all European countries. Both basic
and more sophisticated statistical models have been proposed to
capture these evolutions. Many models assume only a (log) linear
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function of time for the modelling of the number of fatalities, for
instance some of the models discussed in Elvik (2010).

Accidents and their consequences in terms of victims are occur-
rences of failures in the road transportation system. Each time a
road user makes a trip, he or she is exposed to harm with a certain
probability of being involved in an accident or being killed. The
number of traffic fatalities in a certain period is obviously depend-
ent on the total exposure resulting from the amount of traffic in
the traffic system in that same period. The amount of exposure
determines the scale of the road safety problem and is therefore
an essential factor in the assessment of road safety. Many mod-
els include some measure of traffic volume as an approximation of
exposure. Frequently (e.g., Oppe, 1989, 1991) the total number of
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motor vehicle kilometres travelled is used as a measure of traffic
volume, which is only an approximation of exposure (because it is
based on survey data, for example). It is then used to calculate the
empirical risk as the number of fatalities divided by the number of
kilometres travelled.

This paper tries to overcome the limitations of previous models
by considering three issues. First, it is acknowledged that the actual
exposure is latent and can only be approximated by whichever
measure of traffic volume is chosen. Consequent on the assump-
tion of latent exposure, the risk derived analogous to that reported
by Oppe (1989, 1991) now becomes a latent risk by definition. Sec-
ond, latent exposure and the latent risk are simultaneously used
for the modelling of the number of fatalities instead of in two  sep-
arate steps as was done in Oppe (1989, 1991). When seeking to
understand the evolution in the number of fatalities or accidents
this approach makes it easier to decide whether a change is to be
attributed to a change in exposure or to a change in the risk road
users are exposed to. Finally, as indicated in Elvik (2010), the trends
underlying the developments of the number of traffic fatalities need
not be stable over time, with the consequence that modelling them
as stable may  yield poor in-sample predictions as well as poor fore-
casting results. Another aspect paramount to the analysis of data
spanning an extended period of time, therefore, is that relations
need not be invariant over the whole observed period. One way
to handle such changes is to allow (model) parameters to be time
varying as well, thus yielding improved in-sample predictions and
forecasting results. The model described and applied in this paper
– called the Latent Risk Time series model (Bijleveld et al., 2008;
Bijleveld, 2008; COST 329, 2004) – is designed to accommodate all
three of the above-mentioned properties.

The aim of the analyses presented in this paper is to obtain fore-
casts for the number of traffic fatalities in each of the European
countries in 2020 in a similar way by means of the structural time
series approach, using comparable data as much as possible. As the
purpose is to provide some comparable robust forecasts to help
policy makers develop long-term targets and strategies for suc-
cessful road safety policies, the models are focused to the analysis
of two basic components: exposure and risk, and the introduction
of idiosyncratic explanatory factors has been avoided whenever
possible.

In total, the results for some 30 countries are presented in this
paper that are based on the work performed for the EC FP7 project
DaCoTA (see Martensen and Dupont, 2010; Dupont and Martensen,
2012; Lassarre et al., 2012).

The use of the homogeneous modelling technique allows to
compare the past and future developments of the various countries
and to address the following important questions:

• Has there been a continuous, smooth development of road safety
or were there abrupt changes in these developments?

• If there were changes, can these be attributed to changes in the
risk, or rather to changes in exposure?

• Where does the past development tend to (if continued)?

This last issue is particularly important for the setting of realistic
road safety targets by policy makers. The European Commission
has set the target to halve the number of road deaths in 2020 as
compared to 2010.

2. Methodology

One of the most important outcomes of road safety – quantified
as the number of fatalities – is a joint function of the “level of dan-
gerousness” of the traffic system, or road risk, and of the extent
in which road users are confronted with this risk, here defined

as the exposure to risk. This framework, where the fatality trend
is decomposed into a risk and exposure trend, was made popular
by Oppe (1989, 1991). This decomposition implies that two series
of observations have to be analysed in parallel in order to model
the development of road safety: one for the road safety indicator,
the other for the exposure indicator. In the models presented here,
the number of fatalities is the road safety indicator. The indicator
for exposure is related to traffic volume and either the number of
vehicle kilometres travelled or the size of the vehicle fleet can be
used, depending on the availability of mobility data in the different
European countries.

The assumption that the development in traffic safety is the
product of the respective developments in exposure and risk can
be summarised as follows:

Vehicle kilometres = Exposure

Fatalities = Exposure × Risk
(1)

Except for the time dependent specification, these two equa-
tions define the Latent Risk Time series model (LRT). In the LRT
model both traffic volume and fatalities are treated as dependent
variables. Traffic volume is modelled as a measure of “exposure”
which can be subject to error. The number of fatalities, on the
other hand, is defined as the product of “exposure” and “risk” and is
also subject to random variation. Traffic volume and the number of
fatalities are considered to be the manifest counterparts of “expo-
sure” and “exposure times risk”, respectively, where “exposure”
and “risk” are treated as latent (i.e., unobserved) variables. By taking
the logarithm of the two equations in (1) (thus turning the multi-
plicative model into an additive one), and adding an error term (also
known as a disturbance term) to the latent variables, we obtain:

log(Traffic Volume) = log(Exposure) + error(Exposure)

log(Fatalities) = log(Exposure) + log(Risk) + error(Fatalities)
(2)

This implies that the disturbances in the original model formu-
lation (1) should also be considered a multiplicative variable. This
may  seem a questionable assumption. One should note, however,
that the additive Gaussian noise model (with constant variance)
might not be appropriate for fatality count data, and possibly even
not for traffic volume data. The implicit assumption of multiplica-
tive errors is actually quite commonly applied, if only for practical
reasons, as it substantially simplifies modelling.

Because the equations in (2) define the way in which the latent
variables exposure and risk can be inferred from the observations,
they are called the measurement equations. When observed over
time, these equations can therefore be interpreted as a decompo-
sition of an observed time series (e.g., log(Traffic Volumet)) into a
trend, which is the latent variable log(Exposuret), and an error term,
which is then also known as an irregular component (the error term
error(Exposuret)).

As can be seen in (2), the log(Exposure) is present in both mea-
surement equations. There is a trend in this bivariate process, which
depends in both equations on the exposure plus a specific trend
related to the risk for the number of fatalities.

In order to specify the dynamics of the model, two linear
state equations are introduced for each of the latent variables
log(Exposure) and log(Risk) in addition to the measurement equa-
tions in (2).

One of these state equations is called the level equation, and the
other the slope equation. The equations are linear, and define that
the slope component at a certain time point is equal to the slope
component at the previous time point plus some additive random
disturbance, while the level at a certain time point is equal to the
level at the previous time point plus the slope at the previous time
point plus some additive random disturbance. In the absence of any
random disturbance, this means that the level follows a straight
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