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a b s t r a c t

This paper investigates the problem of slidingmode control for stochastic Markovian jumping systems, in
which theremay happen actuator degradation. By on-line estimating the loss of effectiveness of actuators,
an adaptive sliding mode controller is designed such that the effect of the actuator degradation can be
effectively attenuated. Besides, both the reachability of the specified sliding surfaces and the stability of
sliding mode dynamics are ensured despite the actuator degradation and Markovian jumping. Finally,
theoretical results are supported by numerical simulations.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Markovian jumping systems (MJSs) have recently received con-
siderable attention, since they may effectively represent a class
of plants with abrupt variations in their structures, due to ran-
dom failures of components, sudden environmental disturbances,
changing subsystem interconnections and abrupt variations in the
operating point of a nonlinear plant. Both the analysis and synthe-
sis for MJSs have been extensively studied, see Liu, Ho, and Niu
(2009), Ma and Boukas (2011), Shu, Lam, and Xiong (2010), Wu,
Xie, Shi, and Xia (2009), Xu and Chen (2005), Zhang and Boukas
(2009) and Zhang, Chen, and Tseng (2005) and the references
therein.

More recently, the application of sliding mode control (SMC)
is also extended to MJSs in Ma and Boukas (2009), Niu, Ho, and
Wang (2007), Shi, Xia, Liu, and Rees (2006) andWu and Ho (2010).
SMC is an effective robust control approach for uncertain sys-
tems, whose main feature is its insensitiveness to variations of
system parameters and external disturbances. In Shi et al. (2006),
the design of SMC was investigated for a class of linear systems
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with Markovian jumping parameters. By the state transformation,
a set of linear sliding surfaces corresponding to every mode was
constructed, and both the reachability and the stability for every
sliding mode dynamics were analyzed. Niu et al. (2007) further
considered the problem of SMC for Itô stochastic systems with
Markovian switching, and these sliding surfaces involving in the
connections among various modes were constructed such that the
reachability of sliding surfaces can be successionally ensuredwhen
the system mode changes from one to another. The aforemen-
tioned works have shown the effectiveness of SMC method for
MJSs. Nevertheless, it is worthy of noting that, the aforementioned
worksweremadeunder the assumption that the actuator or sensor
worked normally, i.e., there did not exist the degradation of actu-
ator or sensor, which may apparently result in limited application
fields.

As is well-known, the actuator degradation in actual physi-
cal systems is usually inevitable, and often yields performance
degradation or even instability. Therefore, how to maintain an ac-
ceptable stability/performance for the closed-loop systems against
actuator or sensor failures has been a long-standing and ac-
tive research topic (Veillette, Medanic, & Perkins, 1992). In the
past decades, various reliable control methodologies have been
proposed, e.g., linear–quadratic state-feedback control (Veillette,
1995), pre-compensator (Zhao & Jiang, 1998), H∞ disturbance at-
tenuation (Yang, Wang, & Soh, 2001), fuzzy logic method (Wu &
Zhang, 2007), variable structure scheme (Niu & Wang, 2009), and
so on. Recently, a reliable H∞ controller with adaptive mechanism
was proposed by Yang and Ye (2010). Based on the on-line estima-
tion of eventual faults, the parameters of the reliable controller in
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Yang and Ye (2010)were updated automatically to compensate the
fault effects on the system performance. Zuo, Ho, andWang (2010)
further extended the above idea to the singular systems. The above
works have shown that the on-line estimating method is effective
for the systems subject to actuator degradation.

However, to the author’s best knowledge, the problem of SMC
for stochastic MJSs with actuator degradation has not beenwell ad-
dressed and remains open. Moreover, these existing works cannot
be simply extended to the present case with Markovian jumping
and actuator degradation. These motivate the present study.

In this work, the problem of SMC has been investigated for a
class of Itô stochastic MJSs subject to actuator degradation. Firstly,
the model of actuator degradation is presented, in which only the
bounds of actuator degradation are known. And then, the on-line
estimation will be made for the loss of effectiveness of actuators.
Due to the characteristic of MJSs, one has to consider how to
establish the connections among sliding surfaces corresponding to
each mode. To this end, some specified matrices are employed in
the design of sliding surfaces such that the necessary connections
among various sliding surfaces are ensured. And then, an
adaptive sliding mode controller is synthesized, which cannot only
ensure the reachability of the specified sliding surfaces, but also
effectively compensate the effect of actuator faults on the system
performance by adaptively updating the controller’s parameters.
Finally, the sufficient conditions for the stability of the closed-loop
systems are derived. It is shown from simulation results that, the
effect of bothMarkovian switching and actuator degradation can be
effectively attenuated by the present SMC method.

Notations: ∥·∥ and ∥·∥1 denote, respectively, the Euclidean
norm and 1-norm of a vector (sum of absolute values) or its in-
duced matrix norm. For a real matrix, M > 0 means that M is
symmetric and positive definite, and I is used to represent an iden-
tity matrix of appropriate dimensions. (Ω, F , P ) is a probability
space with Ω the sample space, and F the σ -algebra of subsets of
the sample space, andP is the probabilitymeasure.Matrices, if not
explicitly stated, are assumed to have compatible dimensions.

2. Problem formulation and preliminaries

Let {rt , t ≥ 0} be a right-continuous Markov process on the
probability space (Ω, F , P ) which takes values in a finite state
space S = {1, 2, . . . ,N} with generator Π = (λij) (i, j ∈ S) given
by:

P {rt+∆ = j|rt = i} =


λij∆ + o(∆), i ≠ j,
1 + λii∆ + o(∆), i = j, (1)

where ∆ > 0 and lim∆→0 o(∆)/∆ = 0, λij > 0 (for i ≠ j) is the
transition rate from mode i to jwith λii = −


j≠i λij (i, j ∈ S).

Consider the following stochastic MJSs of the Itô form:

dx(t) = [(A(rt) + 1A(rt)) x(t) + B(rt)u(t)] dt
+D(rt)g(t, x(t), rt)dw(t), (2)

where x(t) ∈ Rn, u(t) ∈ Rm, and w(t) is a 1-dimensional Brown-
ian motion defined on the probability space (Ω, F , P ).

For each rt = i ∈ S, let A(rt) = Ai, 1A(rt) = 1Ai(t), B(rt) =

Bi,D(rt) = Di, and g(t, x(t), rt) = g(t, x(t), i). Then, the system
(2) can be rewritten as:

dx(t) = [(Ai + 1Ai(t)) x(t) + Biu(t)] dt
+Dig(t, x(t), i)dw(t). (3)

Here, Ai, Bi andDi are known real constantmatrices, the param-
eter uncertainty 1Ai(t) and the unknown function g(t, x(t), i) ∈

Rl (with l < n), respectively, satisfying:

1Ai(t) = MiFi(t)Ni, (4)
trace


g(t, x(t), i)Tg(t, x(t), i)


≤ ∥Hix(t)∥2 ,

with g(t, x(t0), i) = 0, (5)

where Mi,Ni, and Hi are known real constant matrices, and Fi(t)
is an unknown matrix function satisfying Fi (t)T Fi(t) ≤ I , for any
i ∈ S. Without loss of generality, it is assumed that the pair (Ai, Bi)
is controllable and the input matrix Bi has full column rank, i.e.,
rank (Bi) = m.

As discussed in the Introduction, the actuator degradation is
usually inevitable in actual application. Hence, in this work, it is
assumed that, the actuator degradation may happen according to
the following model:

uF (t) = (I − ρ) u(t), (6)

with ρ = diag (ρ1, . . . , ρm) satisfying:

0 ≤ ρ
k
≤ ρk ≤ ρ̄k < 1, k = 1, 2, . . . ,m, (7)

where the unknown parameter ρk (k = 1, . . . ,m) denotes the
loss of effectiveness of the kth actuator. Moreover, it is assumed
that, both the lower and upper bounds of ρk are known. Define
ρ = diag(ρ

1
, . . . , ρ

m
), ρ̄ = diag (ρ̄1, . . . , ρ̄m).

Then, the system (3) subject to actuator degradation (6) is
described by:

dx(t) = [(Ai + 1Ai(t))x(t) + Bi(I − ρ)u(t)]dt
+Dig(t, x(t), i)dw(t). (8)

Remark 1. It can be seen that the actuator model in (6) covers the
normal operation case (as ρ

k
= ρ̄k = 0) and partial degradation

case (as 0 < ρ
k

≤ ρ̄k < 1), while in the aforementioned works,
the actuator degradation was usually assumed to occur among a
pre-specified subset of actuators. Hence, the case considered in this
work is more general.

The objective of this work is to design a sliding mode controller
such that the stability of the resultant closed-loop system can be
ensured despite actuator degradation and external disturbance.

In the sequel, some concepts and lemmas are introduced, which
are useful for the development of the main results.

Definition 1. The equilibrium solution, xt = 0, of the stochastic
differential equation (8) with u(t) = 0 is said to be globally
asymptotically stable (with probability one) if for any s ≥ 0 and
ε > 0,

lim
x→0

P

sup
s<t

xs,xt

 > ε


= 0, P


lim

t→+∞

xs,xt

 = 0


= 1,

where xs,xt denotes the solution at time t of a stochastic differential
equation starting from the state x at time s for s ≤ t .

Lemma 1 (Lin & Cai, 1995). The trivial solution of the stochastic
differential equation

dx(t) = a(t, x)dt + b(t, x)dw(t)

with a(t, x) and b(t, x) sufficiently differentiable maps, is globally
asymptotically stable (with probability one) if there exists a positive-
definite radially unbounded function V (t, x), and satisfies

LV =
∂V
∂t

+
∂V
∂x

· a(t, x) +
1
2
trace


bT (t, x)

∂2V
∂x2

b(t, x)


< 0, for x ≠ 0. (9)

3. Sliding surface

In this section, the sliding surfacewill be firstly constructed. It is
worthy of noting that, under Markov jumping, all modes of system
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