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a  b  s  t  r  a  c  t

Crash  prediction  models  play  a major  role  in  highway  safety  analysis.  These  models  can  be used  for
various  purposes,  such  as  predicting  the  number  of road  crashes  or  establishing  relationships  between
these  crashes  and  different  covariates.  However,  the  appropriate  choice  for the  functional  form  of  these
models  is generally  not  discussed  in  research  literature  on  road  safety.  In  case  of run-off-the-road  crashes,
empirical evidence  and  logical  considerations  lead to  conclusion  that  the  relationship  between  expected
frequency  and  traffic  flow  is not  monotonously  increasing.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Crash prediction models play a major role in highway safety
analysis. These models can be used for various purposes, such as
predicting the number of road crashes or establishing relation-
ships between these crashes and different covariates. However, the
appropriate choice for the functional form of these models, relat-
ing crash frequency and traffic flow, is generally not present from
research literature on road safety.

As suggested by Lord et al. (2005a), it may  be preferable to begin
to develop models that consider the fundamental crash process
rather than making efforts for the most-fitted model.

In case of run-off-the-road (ROR) crashes, empirical evidence
and logical considerations lead to conclusion that the relationship
between expected frequency and traffic flow is not a linear one.
For low traffic flows one may  expect the number of ROR crashes
per unit of time to be proportional to traffic flow. But, as traffic
flows increase it becomes more and more difficult not to hit another
car. Hence, for ROR crashes, proportionality cannot be expected to
hold at high flows. In traffic congestion, ROR crashes are, in fact,
impossible, except for very low skid resistance conditions, such as
ice and snow covered pavements. This is a reflex of the fact that
drivers behave differently in sparse, heavy or congested traffic and
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that ROR crash frequency depends on the actual state of the system
(flow, speed and density) in time and space (Hauer, 1997).

Two  main approaches have been followed to model the relation-
ship between roadway and roadside characteristics and ROR crash
risk (Pardillo-Mayora et al.,  2010).

One method, usually referred to as encroachment-based, uses a
set of conditional probabilities of the sequence of events that lead to
a ROR crash following the encroachment of an errant vehicle on the
roadside (Mak, 1995; Mak  et al., 1998; Ray et al., 2012). The main
obstacle in the development of this type of models is the short-
age of encroachment data. Data collected in the 1960s and 70s in
North America (Hutchinson and Kennedy, 1966; Cooper, 1980) are
still the main source of information on these manoeuvres (Pardillo-
Mayora et al., 2010). In the development of the recently updated
version of the Roadside Safety Analysis Programme (RSAP) – a com-
puter programme for performing cost benefit analyses on roadside
design developed under NCHRP Project 22–27 – the Cooper data
was re-analyzed to attempt to resolve some of its longstanding
problems (Ray et al., 2012).

A second approach is the development of generalized linear
regression models fitted to cross-sectional data, to estimate ROR
crash frequencies using exposure and relevant highway and road-
side variables as covariates. The frequency of crashes in a given
highway segment is treated as a random variable which takes dis-
crete integer non-negative values distributed following a Poisson
distribution. A generalization of the Poisson form that allows the
variance of the model to be over-dispersed results in the Negative
Binomial (NB) model. Lee and Mannering (2002) and Geedipally
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and Lord (2010) used Poisson and NB regression models to develop
ROR crash prediction models. In both cases, crash prediction models
use the following functional form:
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i e

∑
i

�ixi (1)

The mean number of the crashes per unit of time for segment i
(�i) is a function of traffic flow, Qi, and a set of risk factors, xi. In Eq.
(1) the effect of traffic flow on crashes is modelled in terms of an
elasticity, which is a power, ˇ1, to which traffic volume is raised.
The effects of various risk factors that influence the probability of
crashes, given exposure, is generally modelled as an exponential
function, that is as e (the base of natural logarithms) raised to a
sum of the product of coefficients, � i, and values of the variables,
xi, denoting risk factors. In its most basic form, traffic flow is the
sole explanatory variable in crash prediction models. For road seg-
ments, several crash prediction models also include segment length
as covariate which in some cases is assumed as an offset, with
� i = 1. Depending on the road network characteristics, there are
cases in which this simplification is not appropriate, both from the
operational and purely statistical points of view (Mountain et al.,
1996). According to Reurings et al. (2005), the segment length, the
access density, the carriageway width and the shoulder width are
a desirable minimum list of risk factors for road segments.

Eq. (1) is the conventional functional form of crash prediction
models (Reurings et al., 2005). However, as noted by Hauer (2004),
the crash phenomenon does not necessarily have to follow a simple
monotonous, mathematical function. If the model functional form
is not appropriate, the regression coefficients obtained are inac-
curate, and in several cases the estimated values are ambiguous.
One way to mitigate this problem is to set the traffic flow interval
(lower and upper bounds) for which the modelled equations are
valid; an alternative way is to fit equations with a different func-
tional form, with overall shapes that are in better agreement with
road operation characteristics. However, ADT is the average of the
annual distribution of traffic volumes on selected road segments.
Therefore, it is just a moment statistic of a highly non-uniform dis-
tribution, where seasonal, monthly, daily, hourly periodic trends
may  be detected. From traffic census, it is known that the ratios
between daylight and nighttimes traffic or between winter and
summertime traffic are not the same for all segments on a road net-
work. For that reason, it is still open to debate whether ADT is an
appropriate macroscopic variable to solely represent exposure and
the underlying crash mechanisms directly related to traffic volume,
given the increasing availability of automatically collected data
that may  be used to calculate complimentary traffic distribution
statistics. Nevertheless, one must acknowledge that the mentioned
traffic time trends show, at least partially, a scale factor depending
on the ADT value.

Following a comprehensive and systematic bibliographic
search, few studies addressing the issue of crash prediction model
functional form selection were identified. So far, little interest has
been dedicated to study alternative functional forms to express
the relationship between specific crash types and traffic flow.
Reurings and Janssen (2007) compared models using the func-
tional form expressed in Eq. (1) with models where Annual Average
Daily Traffic (AADT) could be considered as a property of the car-
riageway under consideration and hence as a sort of continuous
dummy-variable. They concluded that not only these last models
did not have the desired structure but also that adding the variable
AADT/1000 was indeed an improvement of the models for urban
carriageways. Kononov et al. (2011) related traffic flow parame-
ters, such as speed and density, to the choice of the functional form
of crash prediction models. It compared models for urban free-
ways developed with sigmoid and exponential functional forms.
Neural networks (NN) were used to explore the underlying rela-
tionship between accidents and other variables for urban freeway

segments. The results were then compared with models calibrated
by using these same data with generalized linear modelling and
an NB error structure. The functional form generated through the
training of NNs suggests that a sigmoid may  be a reasonable approx-
imation of the operational characteristics of crash occurrence on
urban freeways.

The objective of this paper is to document the application of NB
generalized linear models with different functional forms in the
analysis of ROR crash data, exploring the underlying relationships
between ROR crashes and traffic flow for interurban road segments.

The study objective was  accomplished using observed and
simulated datasets. The models were applied to single and dual car-
riageway road datasets. Subsequently, the models were applied to
simulated datasets to show their general performance (Geedipally
et al., 2012).

2. Methodology

This section describes the probabilistic structure of the negative
binomial models, the functional form used for linking ROR crashes
to covariates, the procedure employed for estimating the confi-
dence intervals, and characteristics of the Monte Carlo simulation
study.

2.1. Negative binomial models

In applying Poisson regression to crash frequency analysis, let yij
be the number of ROR crashes on highway element i during period
j. The Poisson model is (Washington et al., 2011):

p(yij) =
exp(−�ij)�

yij

ij

yij!
, (2)

where P(yij) is the probability of y crashes occurring on highway
element i during time period j and �ij is the expected value of yij:

E(yij) = �ij = exp(ˇXij), (3)

for a roadway section i in time period j,  ̌ is the vector of param-
eters to be estimated and Xij is a vector of explanatory variables
describing roadway section geometric and environmental charac-
teristics, as well as other relevant features such as traffic, that may
affect crash frequency.

A feature of the Poisson distribution refers to the equality
between the counts expected value and its variance. However, it
is not always possible to assume that �ij is constant. On the one
hand, the decreasing trend in time of accident risk, as observed
in many countries, weakens the validity of the hypothesis of con-
stancy in time of probability of occurrence. On the other hand, there
are unknown factors that may  contribute to crash occurrence as
well as factors which, although known, are quantified with mea-
surement errors, in both cases justifying that the individual risks
on each entity in a homogeneous group of entities are not identi-
cal. Thus, the ratio of the variance to the expected value differs from
one, i.e., overdispersion or subdispersion are observed (Roque and
Cardoso, 2013).

The negative binomial model is an extension of the Poisson
regression model that accommodates data overdispersion. The
negative binomial model is derived by rewriting Poisson param-
eter for each observation i at a given time interval j as (Washington
et al., 2011):

�ij = exp(ˇXij + εij) (4)



Download English Version:

https://daneshyari.com/en/article/6966031

Download Persian Version:

https://daneshyari.com/article/6966031

Daneshyari.com

https://daneshyari.com/en/article/6966031
https://daneshyari.com/article/6966031
https://daneshyari.com

