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a  b  s  t  r  a  c  t

Precise  estimation  of  the  relative  risk  of  motorcyclists  being  involved  in a fatal  accident  compared  to  car
drivers  is  difficult.  Simple  estimates  based  on  the  proportions  of  licenced  drivers  or  riders  that  are killed
in  a fatal  accident  are  biased  as  they  do not  take  into  account  the  exposure  to  risk. However,  exposure
is  difficult  to  quantify.  Here  we adapt  the  ideas  behind  the well  known  induced  exposure  methods  and
use  available  summary  data  on speeding  detections  and  fatalities  for motorcycle  riders  and  car  drivers  to
estimate  the  relative  risk  of a fatality  for motorcyclists  compared  to  car drivers  under  mild  assumptions.
The  method  is applied  to  data  on  motorcycle  riders  and  car  drivers  in  Victoria,  Australia  in  2010  and  a
small  simulation  study  is conducted.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Our initial motivation is the reporting of statistics relating to
motorcycling in Victoria, Australia during 2010. According to a
Victorian Transport Accident Commission media release on 18
May  2010, “Independent research shows that riders are 38 times more
likely than car occupants to be seriously injured or killed in a crash.”
This statement caused much umbrage in the Victorian motorcycle
community and motivated the current work. The justification of
the above statement was Table 3.6 page 21 of Berry and Harrison
(2008) that gave an estimate of the injury rate per 100 million
kilometres travelled for cars and motorcycles, yielding a relative
risk of 38.5 in comparing the injury rate of motorcycle riders and
car drivers in Victoria. However, they note these figures should
be used with caution due to the standard error of the estimated
numbers of kilometres travelled. In examining injuries to cyclists
in New Zealand, Tin Tin et al. (2010) use household travel surveys
to assess travel times. As well as cyclists, they also give estimates of
accident rates for motorcyclists and the risk ratios based on these
estimates are even higher than those of Berry and Harrison (2008).
Moreover, in their Table 6, Johnston et al. (2008) give risk multiples
comparing deaths per kilometre for Australian motorcycle riders
and drivers for 1998–2007 ranging between 25.4 and 34.6. They
quote a Bureau of Infrastructure, Transport and Regional Economics
Working Paper as the source of their figures on vehicle kilome-
tres travelled. As noted in Kweon and Kockelman (2003), “one
cannot draw reliable conclusions on safety issues without exposure
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information.” The traditional method of estimating relative risk is
to divide the numbers of fatalities say by a measures of exposure.
Measures of exposure are a combination of the number of vehicles
and the average time they each spend on the road, but as noted in
Staminiadis and Deacon (1997) and evident in Berry and Harrison
(2008), accurate estimates can be impossible to make. Apart from
their variability, drawbacks of measures of exposure based on
surveys is that they can be expensive, are rooted at the time at
which the survey was conducted and again as noted in Staminiadis
and Deacon (1997), differences such as large heavy trucks being
over represented on highways and young drivers over represented
on suburban streets during weekend evenings are not accurately
measured.

Induced exposure (Thorpe, 1964), which is derived from acci-
dent involvement data, and quasi induced exposure avoid the direct
estimation of exposure. As noted in Staminiadis and Deacon (1997),
quasi-induced exposure analysis regards exposure as “relative expo-
sure of various classes of drivers/vehicles to situations conducive to
multiple vehicle accidents”.  Induced exposure methods are well
known in accident research (Cuthbert, 1994) and have been exten-
sively studied and applied, e.g. Staminiadis and Deacon (1997),
Redondo-Calderon et al. (2001) and many more, and the method
has been compared with case–control studies (Lenguerrand et al.,
2008). These methods are based on distinguishing between respon-
sible and nonresponsible drivers in multi vehicle accidents.

Given the amount of summary or aggregate data on road safety
and speeding offences currently available the development of
statistical methods that could monitor relative risk without con-
ducting surveys to estimate exposure would seem worthwhile.
There may  be two  events related to the exposure of a class of
road users. Here we consider being involved in a fatal accident and
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being detected speeding by a camera. This is particularly suited
to car/motorcycle comparisons as the two types of vehicle can be
easily distinguished in the photographs. We  use a type of induced
exposure model to give an estimator of the relative risk of being
involved in a fatal accident under an assumption on the relationship
between exposure to speed detection and exposure to involvement
in a fatal accident. This assumption is discussed in more detail in
Section 5. The model proposed here is akin to a latent variable
model, where the latent variables are the unobserved exposures
of the populations to either risk.

The motivating data for the approach adopted here was  col-
lected in the state of Victoria, Australia in 2010. In this state
there is an extensive network of cameras that are used to detect
speeding drivers and riders and we use this information and
information on fatalities to estimate relative risk. The Victo-
ria Police submission to a Parliamentary Road Safety Committee
Inquiry into Motorcycle Safety http://www.parliament.vic.gov.au/
rsc/inquiries/article/1681 reports that in that year 49 motorcyclists,
including pillions, were killed and 130 car drivers, excluding pas-
sengers, were killed. Moreover, during that year fixed and mobile
speed cameras detected 1,298,485 speeding infringements for cars
and 17,715 for motorcycles. These were total speeding infringe-
ments including those where the driver or rider could not be
identified.

In Section 2 we give the model and develop an estimator of the
relative risk. In Section 3 we conduct some simulations, in Section
4 we apply the method to the data described above and in Section 5
we give some discussion. Some technical assumptions and results
are given in the appendices.

2. Model and inference

The key to the induced exposure approach to estimating relative
risk is the assumption that the rate of exposure to two types of risk
are related, so that this quantity cancels out when we take ratios.
These are the risk of single or multivehicle crashes. In our case the
risks are of being involved in a fatal accident or being detected
speeding by a speed camera. Let FM and FC be the number of motor-
cycle and car fatalities respectively and NM and NC the numbers of
motorcycles and cars detected speeding in a given period.

Let EM represent the population level exposure of motorcyclists
to being in a fatal accident while riding, E∗

M the population level
of exposure of motorcyclists to being detected speeding and sim-
ilarly define EC and E∗

C for car drivers. Let PM, PC, QM and QC be
real parameters. These coefficients relate the risk exposure to the
risk, with PM and PC being related to speeding, QM and QC to being
fatally injured, where the M and C subscripts referring to motorcy-
cles and cars respectively. For a random variables X, E(X) denotes
its expectation and V(X) its variance. We  suppose that

E(NM) = PME(E∗
M), E(NC ) = PCE(E∗

C ),

E(FM) = QME(EM), E(FC ) = QCE(EC ).
(1)

The parameter QM relates the exposure of motorcyclists to the mean
number of motorcycle fatalities and similarly QC relates the expo-
sure of drivers to the mean number of driver fatalities. The quantity
of interest is the relative risk

R = QM

QC
. (2)

This measures the increase in motorcycle fatalities compared to
driver fatalities for the same level of exposure. In addition we  sup-
pose that

E(EM)
PME(E∗

M)
= E(EC )

PCE(E∗
C )

.  (3)

This assumption is discussed in Section 5 and some further techni-
cal assumptions are given in Appendix A.

We estimate R by

R̂ = FMNC

FCNM
. (4)

We  call this the induced relative risk. Replacing each term by its
expectation and using (3) yields

E(R̂) ≈ QME(EM)PCE(E∗
C )

QCE(EC )PME(E∗
M)

= QM

QC

so that under (3) the induced relative risk is an estimator of the
relative risk. We  justify this in Appendix B and further show that
under further assumptions stated in Appendix A,

V̂ {log(R̂)} ≈ 1
FM

+ 1
NC

+ 1
FC

+ 1
NM

, (5)

which may  be used to construct confidence intervals for R.
Remark. As noted by a referee, the probability a motorcycle is

detected speeding and is recorded may  be P̃M = kPM for some k.
For example in most developed countries motorcycles do not have
front number plates and hence cannot be detected by front fac-
ing cameras. If only the number of infringements where fines were
issued is reported then k /= 1. We  still suppose (3) holds for PM, but
not necessarily P̃M . This requires an adjustment to the estimator of
R. Now we have E(R̂) = R/k, so that if k < 1, the resulting estimator
will be positively biased. If we suppose that k is known, the esti-
mator is now R̃ = kR̂ and the ends of the confidence intervals are
now k times those computed using (5). If k is not known, it may  be
desirable to conduct an auxiliary experiment to estimate it. Typi-
cally, if the sample size is large, the variance of this estimator will
be negligible compared with that of R̂. There is a similar adjustment
if not all cars detected speeding are identified but for simplicity we
omit this.

3. Simulations

To assess the validity of the formulae, a small simulation study
was conducted. This part of the study is not meant to reflect real-
ity, but merely to examine the performance of the estimators
when the parameter values are known. In the reported simula-
tions, to simulate a population of road users we  took EM = 3,000,000,
E∗

M = 10 × EM , EC = 65 × EM and E∗
C = 10 × EC . These do not rep-

resent numbers of drivers but exposure of drivers, for example
numbers of drivers times the average time spent driving. We  took
PM = PC = 0.0006, QC = 6.12 × 10−7 and QM = R × QC where initially we
set R = 27 to match our application. This gave means E(NM) = 18,000,
E(NC) = 1,170,000, E(FM) = 49.6 and E(FC) = 119.4. We  simulated the
observations from Poisson distributions with these means. After
10,000 simulated experiments the mean of the estimates was 27.23
suggesting there is little bias. The variance of the estimates of R was
0.03 and the mean of the estimated variance of log(R̂) was 0.029
indicating the variance formula is appropriate. Moreover, the esti-
mated coverage probability of the 95% confidence intervals was
0.947. Further simulations over a range of values of R from 0.5 to
30 gave similar results: The average bias over the range of values of
R was 2.5% and the average coverage of the nominal 95% confidence
intervals was 0.954. It was  noted in the simulations that for smaller
values of R the simulated value of FM could be zero in which case the
standard errors using (5) were not computable and that the confi-
dence bounds for these smaller values were slightly conservative,
with the coverage probabilities being around 0.96. This is due to
small values of FM inflating the variance estimates. See Eq. (5).

Following our remark above we also conducted simulations
with k = 0.5, so that P̃M = 0.0003 and PC = 0.0006. In this case, with-
out adjusting for k, the mean of the estimated values of R was 54.4
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