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a b s t r a c t

The Kalman filter and smoother are optimal state estimators under certain conditions. The Kalman filter
is typically presented in a predictor/corrector format, but the Kalman smoother has never been derived in
that format.Wederive theKalman smoother in a predictor/corrector format, thus providing a unified form
for the Kalman filter and smoother. We also discuss unbiased finite impulse response (UFIR) filters and
smoothers, which can provide a suboptimal but robust alternative to Kalman estimators. We derive two
unified forms for UFIR filters and smoothers, and we derive lower and upper bounds for their estimation
error covariances.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

We assume that we have a linear system described as

xi = Fixi−1 + wi

yi = Hixi + vi (1)

where the time index i ≥ 1, xi is the K -dimensional state vector,
yi is the M-dimensional measurement, {wi} is a process noise
sequence, {vi} is a measurement noise sequence, and system
matrices Fi and Hi are known. Our objective is to estimate xi based
on the measurements and our knowledge of the system dynamics.

We use the term estimator to refer to the class of algorithms
that includes filtering, prediction, and smoothing. A filter estimates
xi based on measurements up to and including time i. A predictor
estimates xi based on measurements prior to time i. A smoother
estimates xi based on measurements prior to time i, at time i, and
later than time i.
Kalman estimation

The Kalman smoother can be written in fixed-lag form, fixed-
interval form, or fixed-point form. These algorithms can be
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described as follows (Anderson & Moore, 2005) and (Simon,
2006, ch. 9).

• A fixed-lag smoother estimates xi for i ≥ 1 usingmeasurements
up to and including time i + q for a fixed value of q > 0.

• A fixed-interval smoother estimates xi for i ∈ [1,N] using
measurements up to and including time N .

• A fixed-point smoother estimates xi using measurements up to
and including time i+q for a fixed value of i and for q = 1, 2, . . ..

As we will see in Section 2, the form of the Kalman smoother
is much different than that of the Kalman filter. Section 2.1 de-
rives a Kalman smoother that is in the same form as the predic-
tor/corrector form of the Kalman filter.

The Kalman filter is an infinite impulse response (IIR) filter; that
is, each measurement ym affects each estimate x̂i for allm ≤ i. The
IIR nature of the Kalman filtermakes it sensitive tomodeling errors
(Heffes, 1966; Nishimura, 1966; Soong, 1965). Over the past few
decades, researchers have proposed many methods of making the
Kalman estimator more robust (Peña & Guttman, 1988). Kalman
estimation with uncertainties in the system matrices has been
considered by many authors (Kosanam & Simon, 2004; Theodor &
Shaked, 1996; Xie, Lu, Zhang, & Zhang, 2004; Zhang, Heemink, &
Van Eijkeren, 1995); this is often called adaptive or robust Kalman
estimation (Hide, Moore, & Smith, 2003). Methods for identifying
noise covariances are presented in Alspach (1974); Mehra (1972)
and Myers and Tapley (1976).
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Finite impulse response estimation
Whereas the research efforts mentioned above aimed to im-

prove the Kalman estimator in the presence of mismodeling, we
propose instead to use a finite impulse response (FIR) estimator.
The advantages of transversal FIR estimators over Kalman esti-
mators were recognized as far back as the 1960s, particularly in
the areas of stability and robustness (Jazwinski, 1970). In spite of
their history, FIR filters are not commonly used for state estima-
tion. This is probably due to their analytical complexity and large
computational burden. FIR smoothers can be used for polynomial
models (Wang, 1991; Zhou & Wang, 2004). Order-recursive FIR
smoothers were proposed for state space (Yuan & Stuller, 1994).
General receding horizon FIR smoother theory has been developed
(Ahn & Kim, 2008; Han & Kwon, 2007, 2008; Kwon, Han, Kwon,
& Kwon, 2007). More recently, unbiased FIR (UFIR) smoothing of
polynomial state space models has been considered (Shmaliy &
Morales-Mendoza, 2010), and FIR smoothing was developed from
the general p-shift estimator (Shmaliy, 2010, 2011; Shmaliy &
Ibarra-Manzano, 2012). Iterative UFIR algorithms have also been
developed (Shmaliy, 2010, 2011). These algorithms have the same
predictor/corrector structure as the Kalman filter, often ignore the
statistics of the noise and initial estimation errors, and become vir-
tually optimal as the length of the FIR window increases.

Overview of the paper
Section 2 gives a brief review of Kalman filtering and smooth-

ing, and derives a unified form for the two algorithms. Section 3
gives a review of UFIR filtering and smoothing, and derives two
distinct but mathematically equivalent unified forms for the two
algorithms. It also derives upper and lower bounds for the es-
timation error covariance. Section 4 presents some simulation
results.

2. Kalman filtering and smoothing

If our estimate of xi is based on measurements up to and
including time t , we denote the estimate as x̂i|t . If t = i then we
have x̂i|i, which is called the a posteriori state estimate. If t = i − 1
then we have x̂i|i−1, which is called the a priori state estimate. If
t > i, then we have a non-causal smoothed estimate. Suppose the
following conditions hold:

(1) {wi} and {vi} are zero-mean, Gaussian, white, and uncorre-
lated, with known covariances Qi and Ri respectively;

(2) We have an initial state estimate before anymeasurements are
processed that we denote as x̂0|0;

(3) (x0−x̂0|0) ∼ N(0, P0|0), whichmeans that the initial estimation
error is Gaussian and zero-mean with covariance P0|0.

Then the Kalman filter output is the mean of the state conditioned
on measurements up to and including the current time:

x̂i|i = E(xi|y1, y2, . . . , yi) (2)

for i ≥ 1. Furthermore, the Kalman filter estimate is the one that
minimizes the trace of the covariance of the estimation error.
The Kalman filter algorithm can be described as shown in Fig. 1,
although there are also other equivalent formulations of the
Kalman filter (Simon, 2006).

In the case of smoothing, we use futuremeasurements to obtain
the state estimate. One well-known smoothing algorithm is called
the Rauch–Tung–Striebel (RTS) smoother, which is a type of fixed-
interval smoother (Rauch, Tung, & Striebel, 1965) and (Simon,
2006, Section 9.4.2). Given measurements yi for i ∈ [1,N], the
RTS smoother outputs x̂i|N for all i ∈ [0,N]. The RTS smoother
algorithm is summarized in Fig. 2.

Fig. 1. The Kalman filter. Ki is the Kalman gain, Pi|i is the a posteriori estimation
error covariance, and Pi|i−1 is the a priori estimation error covariance.

Fig. 2. The RTS smoother. K s
i is the Kalman smoother gain, and P s

i is the covariance
of the error of the smoothed estimate at time i.

2.1. Unified Kalman filtering and smoothing

Fig. 1 shows that the Kalman filter estimate can be written in
the form

x̂i|i = γix̂i−1|i−1 + Kiyi
where γi = (I − KiHi)Fi (3)

for i ≥ 1. This is called a predictor/corrector form. However, the
smoothed estimate in Fig. 2 does not have this form. We would
like to find a similar form for the smoothed estimate:

x̂n−q|n = γn,qx̂n−1|n−1 +

n
m=n−q+1

βn,q,mym (4)

where the smoother lag q > 0. Such a form could serve at least two
purposes.

First, we find it mathematically attractive to obtain unified
forms for different algorithms.We see this inmany areas of science
and engineering (Fonseca & Fleming, 1998; Guerreiro & Trigueiros,
2010; Miller & Boxer, 1999), so the parallel form of (3) and (4) is
intuitively appealing.

Second, the smoother form of (4) may have practical benefits
because it directly shows the additional sensitivity of the smoothed
estimate to each measurement, beyond the sensitivity already
incorporated in x̂n−1|n−1. βn,q,m is the sensitivity of x̂n−q|n to ym for
m ∈ [n−q+1, n] beyond the sensitivity that is implicit in x̂n−1|n−1.
These sensitivities could be used to processmeasurements in order
of decreasing sensitivity so that themost importantmeasurements
are processed first, in case the timeliness of the smoothed estimate
is important.

Note that all of themeasurements up to and including time n−1
are incorporated in the filtered estimate x̂n−1|n−1 in (4). However,
the additional contribution of those measurements to obtain the
smoothed estimate x̂n−q|n is determined by the βn,q,m coefficients.
We suppose that the estimate x̂n−1|n−1 is available and that the user
may want to process only a subset of the measurements to obtain
the smoothed estimate.

To be more specific, (4) can be written algorithmically by
computing

µ(l) = value of m in the l-th largest value of βn,q,m (5)

form ∈ [n−q+1, n] and l ∈ [1, q].Whenwe say ‘‘l-th largest value
of βn,q,m’’, we implicitly assume somematrix or vector norm. After
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