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a  b  s  t  r  a  c  t

The  objectives  of this  study  are  to: (1) examine  the  applicability  of  the  double  Poisson  (DP)  generalized
linear  model  (GLM)  for analyzing  motor  vehicle  crash  data  characterized  by  over-  and  under-dispersion
and  (2)  compare  the  performance  of  the  DP  GLM  with  the  Conway–Maxwell–Poisson  (COM-Poisson)
GLM  in  terms  of  goodness-of-fit  and  theoretical  soundness.  The  DP  distribution  has  seldom  been  inves-
tigated  and  applied  since  its first introduction  two  decades  ago.  The  hurdle  for  applying  the  DP  is related
to  its  normalizing  constant  (or  multiplicative  constant)  which  is  not available  in closed  form.  This  study
proposed  a new  method  to  approximate  the  normalizing  constant  of  the  DP  with  high  accuracy  and  reli-
ability.  The  DP  GLM  and  COM-Poisson  GLM  were  developed  using  two  observed  over-dispersed  datasets
and one  observed  under-dispersed  dataset.  The  modeling  results  indicate  that  the  DP  GLM with  its nor-
malizing  constant  approximated  by the  new  method  can  handle  crash  data  characterized  by over-  and
under-dispersion.  Its  performance  is  comparable  to  the  COM-Poisson  GLM  in terms  of  goodness-of-fit
(GOF),  although  COM-Poisson  GLM  provides  a  slightly  better  fit.  For  the  over-dispersed  data,  the  DP GLM
performs  similar  to the NB GLM. Considering  the  fact  that  the DP  GLM  can be easily  estimated  with
inexpensive  computation  and  that  it is simpler  to  interpret  coefficients,  it offers  a  flexible  and  efficient
alternative  for researchers  to  model  count  data.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the limited access to driving information, it is very
difficult to identify factors (e.g., brake reaction time, inattention,
etc.) directly influencing the number and severity of motor vehicle
crashes in traffic safety analysis. Thus, instead of focusing on indi-
vidual driver’s information, most researchers approach crash causal
or correlation analyses from a long term statistical view. In this
regards, researchers try to associate the factors of interest with the
frequency of crashes that occurs in a given space (roadway or inter-
section) and time period (Lord and Mannering, 2010). Therefore,
statistical models have been the analysis tool of choice for ana-
lyzing the relationship between motor vehicle crashes and factors
such as road section geometric design, traffic flow, weather, etc.

The traditional poisson distribution has been commonly used to
model motor vehicle crashes. Despite its simple probabilistic struc-
ture, the traditional Poisson distribution has a strict assumption in
that its single parameter does not allow for the flexibility of variance
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varying independently of the mean, which is often violated by its
application to the over-dispersed (i.e., the sample variance is larger
than the sample mean) and under-dispersed (i.e., the sample vari-
ance is smaller than the sample mean) crash data. Under-dispersion
occurs on rare occasions and this often happens when the sam-
ple mean value is low (Lord and Mannering, 2010). Over-dispersed
and under-dispersed data can lead to inconsistent standard errors
of parameter estimates when the Poisson model is used (Cameron
and Trivedi, 1998; Park and Lord, 2007).

Over the last three decades, the negative binomial distribu-
tion or model (NB or Poisson-gamma) has been quite popular
to handle over-dispersed datasets. Although the mean-variance
relationship of the NB is simple to manipulate so as to capture
over-dispersion (Hauer, 1997), it has been found to have diffi-
culties in handling the data characterized by under-dispersion
(Lord et al., 2008a). Though crash data do not exhibit under-
dispersion very often, it is observed more frequently in other
fields of research (for example, see Guikema and Coffelt, 2008;
Sellers and Shmueli, 2010; Borle et al., 2006). In order to man-
age data characterized by over-dispersion and under-dispersion,
researchers have proposed alternative models such as the weighed
Poisson distribution (Castillo and Perez-Casany, 2005), the gener-
alized Poisson distribution (Consul, 1989) and the gamma count
distribution (Winkelmann, 2008). However, these models suffered
from important theoretical or logical soundness. For instance, the
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weighted Poisson distribution has convergence restrictions and it is
necessary to choose an appropriate function, which is sometimes
difficult to do. With the generalized Poisson model, the bounded
dispersion parameter when under-dispersion occurs greatly dimin-
ishes its applicability to count data (Famoye, 1993) and the model
does not include the Poisson family in the interior of the parameter
space (Castillo and Perez-Casany, 2005). The gamma  count distri-
bution assumes that observations are not independent where the
observation for time t − 1 would affect the observation for time
t (Winkelmann, 2008; Cameron and Trivedi, 1998). This would
become unrealistic if the time gap between the two  observations
is large, which can be problematic for analyzing crash data.

Among the distributions or models that have been docu-
mented in the literature, two distributions that can handle both
under- and over-dispersion are particularly noteworthy. One is
the Conway–Maxwell–Poisson (COM-Poisson or CMP) distribution
(Conway and Maxwell, 1962; Shmueli et al., 2005; Kadane et al.,
2006) and the other is the double Poisson (DP) distribution (Efron,
1986). Albeit first introduced in 1962, the statistical properties
of the COM-Poisson have not been extensively investigated until
recently. The COM-Poisson distribution and its generalized lin-
ear model (GLM) have been found to be very flexible to handle
count data (Guikema and Coffelt, 2008; Lord et al., 2008a; Sellers
et al., 2012; Francis et al., 2012). As for the DP, its distribution has
seldom been investigated and applied since its first introduction
about 25 years ago. A handful of research studies have mentioned
that the hurdle for applying the DP is its normalizing constant
(or multiplicative constant), which is not available in the closed
form (Winkelmann, 2008; Hilbe, 2011; Zhu, 2012). They found that
the results of the DP with its normalizing constant approximated
by Efron’s original method are not exact. Instead of using Efron’s
approximation method, this study documents a different method
for handling the normalizing constant.

The objectives of this study are to: (1) examine the applicability
of the DP GLM for analyzing motor vehicle crash data characterized
by over- and under-dispersion and (2) compare the performance of
the DP GLM with COM-Poisson GLM in terms of goodness-of-fit and
theoretical soundness. Two empirical over-dispersed datasets (one
for the high mean scenario and one for the low mean scenario) and
one empirical under-dispersed dataset were used.

2. Background

This section describes the characterization and GLM framework
of the DP and COM-Poisson models.

2.1. Double Poisson model

Based on the double exponential family, Efron (1986) proposed
the double Poisson distribution. The double Poisson model, based
on the distribution, has two parameters � and �. The approximate
probability mass function (PMF) is given as:

P(Y = y) = f�,�(y) = (�1/2e−��)
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The exact double Poisson density is given as:

P(Y = y) = f̃�,�(y) = c(�, �)f�,�(y) (2)

where the factor c(�, �) can be calculated as:
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With c(�, �) being the normalizing constant nearly equal to 1. The
constant c(�, �) ensures that the density sums to unity.

The expected value and the standard deviation (SD) referring to
the exact density f̃�,�(y) are estimated as follows:

E(Y) ≈ �, (4)

SD(Y) ≈
(

�

�

)1/2
(5)

Thus, the double Poisson model allows for both over-dispersion
(� < 1) and under-dispersion (� > 1). When � = 1, the double Poisson
distribution collapses to the Poisson distribution.

Particular focus should be given to the use of the normalizing
constant which includes an infinite series

∑∞
y=0f�,�(y). Although

Efron (1986) demonstrated the closed form approximation to the
infinite series in Eq. (3) and even the approximate density in Eq.
(2) are reasonably good for the case � = 10, they are highly unreli-
able when � is small (i.e., the sample mean is small). For instance,
when � = 0.1 and � = 1.5, the closed form approximation solution
turns into a negative value (1 + ((1 − �)/12��)(1 + (1/��)) = −1.13)
and the sum of the approximate densities is not fairly close to unity(∑∞

y=0f�,�(y) = 1.11
)

. Winkelmann (2008) and Hilbe (2011) also
indicated that the normalizing constant is the hurdle in applying
the DP. They found that the results of the DP with its normalizing
constant approximated by Efron’s original method are not exact.

Some researchers approached the DP model by completely
ignoring the normalizing constant. However, this method is asso-
ciated with both theoretical and practical limitations. It should be
noted that the removal of the normalizing constant in the PMF  will
make the sum of all the likelihoods not equal to unity, which sub-
stantially diminishes the DP’s mathematical appeal. Corresponding
application based on this method also results in unreliable esti-
mates. Zhu (2012) recently tested the DP without the normalizing
constant, and found that the model provides a good fit for the mean,
but does a terrible job for adequately capturing the variance.

In light of the inadequacy of the approximate density function
and the aforementioned approximation to the normalizing con-
stant in handling low mean data, it is important to approximate the
normalizing constant with high accuracy and reliability. Given the
fact that the infinite series

∑∞
y=0f�,�(y) is similar to the Poisson sum

and that it converges very quickly especially when � is small, this
study takes the kth partial sum of the infinite series (i.e., the sum
of the first k terms) to approximate its sum. This method makes
it possible to compute the normalizing constant to some modest
accuracy by adjusting the number k according to user’s preference.
After multiple trials on the selection of k values, we recommend
the value of k to be as least twice as large as the sample mean.

For the DP GLM, the expected number of crashes per year is
linked to the explanatory variables xj by the following link function
(similar to the traditional Poisson):

E(Y) ≈ � = exp

⎛
⎝ˇ0 +

p∑
j=1

ˇjxj

⎞
⎠ (6)

where the vector ˇj is the coefficients to be estimated.

2.2. Conway–Maxwell–Poisson model

In order to model queues and service rates, Conway and Maxwell
(1962) first introduced the COM-Poisson distribution as a genera-
tion of the Poisson distribution. However, this distribution was  not
widely used until Shmueli et al. (2005) further examined its statis-
tical and probabilistic properties. Kadane et al. (2006) developed
the conjugate distributions for the parameters of the COM-Poisson
distribution.

The COM-Poisson distribution has two parameters with � as the
centering parameter and � as the dispersion parameter. When � is
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