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a b s t r a c t

In this paper, the problems of parameter estimation are addressed for systemswith scarcemeasurements.
A gradient-based algorithm is derived to estimate the parameters of the input–output representation
with scarce measurements, and the convergence properties of the parameter estimation and unavailable
output estimation are established using the Kronecker lemma and the deterministic version of the
martingale convergence theorem. Finally, an example is provided to demonstrate the effectiveness of
the proposed algorithm.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The problems of scarce measurements or missing measure-
ments often arise in control systems like chemical process con-
trol and network-based control (e.g., Wang, Ho, Liu, & Liu, 2009
and Wei, Wang, & Shu, 2009). The reconstruction of unavailable
measurements and modeling and identification for systems with
scarce measurements have received much research attention for
decades (Albertos, Sanchis, & Sala, 1999; Sanchis & Albertos, 2002;
Sanchis, Peñarrocha, & Albertos, 2007; Wallin, Isaksson, & Noréus,
2001) and many methods for the reconstruction of unavailable (or
missing) measurements have been reported. One method is using
the interpolation values between two available measurements by
linear, parabola, cubic, spline or piecewise constant interpolations.
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Another way is to reconstruct the missing measurements with a
dynamical model. Also, Broersen, de Waele, and Bos (2004) pro-
posed a finite interval likelihood algorithm for AR model spectral
estimation using the conditional log likelihoods.

Pintelon and Schoukens (2000) used frequency domain model-
ing in the reconstruction, which can be also applied to continuous-
time models for system identification. They treated the missing
data as unknown parameters, which is a promising treatment if
only few data are missing.

Missing measurements can also be estimated using the expec-
tation maximization (EM) approach. For example, Isaksson (1993),
who was one of the pioneers in the field of engineering, compared
several reconstruction methods of missing measurements for ARX
models, including Kalman filtering, maximum-likelihood estima-
tion and iterative reconstruction. Yet another approach to recon-
structingmissingmeasurements is to use the iterative expectation
maximum algorithm. A simplified iteration of data reconstruction
and ARX parameter estimation were proposed by Wallin, Isaks-
son, and Ljung (2000). Gibson and Ninness (2005) explored the
maximum likelihood (ML) estimates of state space models from
multivariable measurements, and employed the EM algorithm as a
means of computingML estimates; Raghavan, Tangirala, Gopaluni,
and Shah (2006) studied the EM-based state space model identifi-
cation problems with irregular output sampling. However, almost
all methods resulted in biased estimates if a large number of data
are missing. Ljung pointed out that the EM algorithm could be also
interpreted as a method to minimize a prediction error criterion
(Ljung, 1999).
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The issue of missing measurements is also tackled by designing
a predictor based on the process model to either infer the lacking
measurements (inference systems) or estimate the state and all
the required process variables, by using a Kalman filter (Sanchis
et al., 2007). For the systems with scarce measurements—a class
of missing output systems, Albertos et al. (1999) introduced an
output predicition/estimation algorithm for systems where some
output data are missing and analyzed its stability for the special
case that every Nth sample of the output is observed, and Wallin
et al. (2001) showed how to analyze the stability for arbitrary
periodical missing data patterns. Sanchis et al. (2007) designed a
model-based output predictor for systems with scarce irregular
measurements with time-varying delays, taking into account the
past measured outputs. Moreover, Albertos et al. (1999) discussed
how the Kalman prediction can be used to fill in the output data by
assuming that the system parameters are known.

Sanchis and Albertos (2002) discussed the problem of recursive
identification under scarce-data operation. The control action is
assumed to be updated at a fixed rate, while the output is assumed
to be measured synchronously with the input update, but with
an irregular availability pattern. Under these conditions, Sanchis
and Albertos used the pseudo-linear recursive algorithms for the
parameter estimation and carried out the convergence analysis for
the case of regular but scarce data availability (Sanchis & Albertos,
2002). Recently, an auxiliary model based least squares algorithm
with a forgetting factor was proposed for systems with irregularly
missing data (Ding & Ding, 2010).

Dual-rate/multirate (non-uniformly) sampled systems can be
viewed as a class of missing-data systems (Ding, Liu, & Yang, 2008;
Ding, Shi, Wang, & Ding, 2010; Liu & Lu, 2010; Liu, Xie, & Ding,
2009; Xie, Liu, Yang, & Ding, 2010). In this literature, Ding, Qiu, and
Chen (2009) studied reconstruction and identification problems
of continuous-time systems from their non-uniformly sampled
discrete-time systems; Ding, Liu, and Liu (2010a) presented a
partially coupled stochastic gradient identification algorithm for
non-uniformly sampled systems.

Unlike the work (Sanchis & Albertos, 2002; Sanchis et al., 2007)
which uses the ARX models, this paper uses the output error
models and studies the parameter identification problems for
the systems with scarce and irregular measurements. The main
contributions of this paper lie in that a gradient-based parameter
identification method for input–output representations and its
convergence properties are explored using only the available
inputs and scarce outputs.

In the fields of modeling, identification and prediction for
systems with missing observations or irregular sampling, Kim
and Stoffer (2008) studied fitting stochastic volatility modeling
in the presence of irregular sampling via particle methods and
the EM algorithm; Gopaluni (2008) explored the identification
problem of nonlinear processes under missing observations based
on the particle filter approach and the EM algorithm; Shumway
and Stoffer (1982) used the time series approach to smooth and
forecast missing observations using the EM algorithm. Also, it
has been reported in Shumway and Stoffer (2000) that the EM
approachwas applied to filtering, smoothing and forecasting of the
state space models with missing data modifications.

The rest of this paper is organized as follows. Section 2
introduces the problem formulation of system identification
with scarce measurements. Section 3 discusses the gradient-
based parameter identification for input–output representations.
Section 4 proves the convergence of the gradient-based algorithm
in the stochastic framework. Section 5 gives two illustrative
examples to show the effectiveness of the proposed algorithms.
Finally, we offer some concluding remarks in Section 6.

2. Problem formulation

Consider the stochastic output error system in Fig. 1, where Pd
has the following transfer representation (Ljung, 1999):

Fig. 1. The stochastic system.

Pd(z) =
B(z)
A(z)

, (1)

u(t) ∈ R1 and y(t) ∈ R1 are the system input and output, respec-
tively, v(t) ∈ R1 is a white noise with zero mean and variance σ 2,
and A(z) and B(z) are the polynomials in a unit backward shift op-
erator z−1(z−1u(t) = u(t−1) or zu(t) = u(t+1)), and defined by

A(z) := 1 + a1z−1
+ a2z−2

+ · · · + anz−n,

B(z) := b0 + b1z−1
+ b2z−2

+ b3z−3
+ · · · + bnz−n.

Referring to Fig. 1 and (1), we have

y0(t) =
B(z)
A(z)

u(t), (2)

y(t) = y0(t) + v(t). (3)

The inner variables (i.e., the true output or noise-free output) y0(t)
and the noise v(t) are unmeasurable and y(t) is the noisymeasure-
ment of y0(t) corrupted by the noise v(t).

In this paper, we consider such a system with scarce
measurements (e.g., Sanchis et al., 2007) that the input u(t) is
available at every instant t because the input signals are usually
generated by digital computers in practice and are normally
available, and only scarcemeasurement data y(t0), y(t1), y(t2), etc.
are available, as shown in Fig. 2, where the integer sequence {ts :

s = 0, 1, 2, . . .} satisfies

0 = t0 < t1 < t2 < t3 < · · · < ts−1 < ts < · · · ,

with t∗s := ts+1 − ts ⩾ 1. Thus y(t) is available only when t =

ts(s = 0, 1, 2, . . .), or equivalently, the data set {y(ts) : s = 0,
1, 2, . . .} contains all available outputs, and the unavailable data
y(ts + 1), y(ts + 2), . . . , y(ts+1 − 1) are all missing for all s =

0, 1, 2, . . . . For instance, for the scarce measurement pattern in
Fig. 2, the availablemeasurements are y(0), y(1), y(3), y(6), y(10),
y(15), y(16), y(21), y(28), . . . , namely, y(t0), y(t1), y(t2), y(t3),
y(t4), y(t5), y(t6), y(t7), y(t7), . . . , for t0 = 0, t1 = 1, t2 = 3, t3 =

6, t4 = 10, t5 = 15, t6 = 16, t7 = 21, t8 = 28, . . . . This is a
general framework in which we assume the patterns with scarce
output availability; of course, it includes all output availability as
special cases when t∗s = 1 for all s.

Fig. 3 plots the missing output data pattern with scarce missing
data where +’s stand for missing outputs or bad data (outliers or
unbelievable data).

From Figs. 2 and 3, we can see the difference between the
scarce measurement pattern and the missing output data pattern.
The system with scarce measurements implies that most data
are missing and a few data are available over a period of time.
Otherwise, the missing-data system implies that most data are
available and a small amount of data are missing over a period of
time.

It is worth noting that an FIR model may be used as the
identification model for such scarce measurements, but the
drawback is that the number of parameters is possibly very large
if the poles of the system are close to the border of the unit circle.

For such a scarce measurement pattern in Fig. 2, the objective
of this paper is to study the gradient-based estimation method to
identify the system parameters for input–output representations
and its convergence properties, using only the available inputs and
scarce outputs y(ts).
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