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a b s t r a c t

Using the tools of optimal control, semiconvex duality andmax-plus algebra, this work derives a unifying
representation of the solution for the matrix differential Riccati equation (DRE) with time-varying
coefficients. It is based upon a special case of themax-plus fundamental solution, first proposed in Fleming
and McEneaney (2000). Such a fundamental solution can extend a particular solution of certain bivariate
DREs into the general solution, and the DREs can be analytically solved from any initial condition.

This paper also shows that under a fixed duality kernel, the semiconvex dual of a DRE solution satisfies
another dual DRE, whose coefficients satisfy the matrix compatibility conditions involving Hamiltonian
and certain symplectic matrices. For the time-invariant DRE, this allows us to make dual DRE linear and
thereby solve the primal DRE analytically. This paper also derives various kernel/duality relationships
between the primal and time shifted dual DREs, which lead to an array of DRE solution methods. Time-
invariant analogue of one of these methods was first proposed in McEneaney (2008).

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The differential Riccati equation (DRE) plays a central role in
estimation and optimal control.

An extensive study of algorithms for solving time-invariant
and time-varying DREs was carried out by Kenney and Leipnik
(1985). These include direct integration, the Chandrasekhar, Leip-
nik, Davison–Maki, modified Davison–Maki algorithms. Later im-
portant developments include a Bernoulli substitution algorithm
by Laub (1982), eigenvector decomposition techniques by Oshman
and Bar-Itzhack (1985), generalized partitioned solutions and in-
tegration free algorithms by Lainiotis (1976), superposition laws
developed by Sorine and Winternitz (1985), solutions by Rusnak
(1988, 1998).More recently, a fundamental solution based onmax-
plus algebra and semiconvex duality was proposed by McEneaney
(2008).

The purpose of this paper is to present a new representation
of the fundamental solution of the time-varying DRE. The funda-
mental solution allows us to efficiently compute a general solution
starting from different initial conditions. This representation uses
the max-plus techniques and is inspired from McEneaney (2008),
but it extends the solution to the time-varying DRE and simplifies
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the treatment by not using the semiconvex duality for the main
result. In process, it derives the special case of themax-plus funda-
mental solution first proposed by Fleming andMcEneaney in Flem-
ing andMcEneaney (2000), for the linear-quadratic problem. It also
shows that such a fundamental solution is bivariate quadratic and
describes the algorithm to compute the same. It shows that evo-
lution of a DRE under the max-plus fundamental solution is also a
semiconvex dual transformation with a suitable kernel. Further it
shows that the semiconvex dual transformation of a DRE, satisfies
another DRE. It then derives the matching conditions between the
coefficients and duality kernel relationships between primal and
dual solutions at different times.

The DRE solution itself is similar in structure to the previous
algorithms. Specifically, the fundamental solution computation
requires integration of three ODEs similar to the forward formulae
in Lainiotis (1976) and 1-representation addition formula in Sorine
and Winternitz (1985). Still, the max-plus framework presented
here is unifying and general. e.g. partitioned formulae for the
forward andbackward time-varyingDREs in Lainiotis (1976), time-
invariant DRE solutions in Leipnik (1985), McEneaney (2008),
and Rusnak (1988) can be derived as special cases of a single
framework. In addition, it is known that such algorithmsworkwell
for the stiff time-varying DREs and long time horizons without any
computational difficulties, unlike the time-marching algorithms or
the Davison–Maki algorithm.

2. Optimal control problem

We consider the matrix differential Riccati equation (DRE) of the
form

0005-1098/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2011.05.009

http://dx.doi.org/10.1016/j.automatica.2011.05.009
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:ameet.deshpande@gmail.com
http://dx.doi.org/10.1016/j.automatica.2011.05.009


1668 A.S. Deshpande / Automatica 47 (2011) 1667–1676

− ṗ(t) = A(t)′p(t)+ p(t)A(t)+ C(t)+ p(t)Σ(t)p(t) (1)

given the boundary condition p(T ) at time T . Here t ∈ (−∞,
T ], A(t) ∈ Rn×n, p(t), C(t),Σ(t) are square and symmetric n × n
matrices and Σ(t) = σ(t)σ (t)′ ≽ 0 where σ(t) is n × m matrix.
Note that the notation A′ denotes the transpose of matrix A. It is
well known that above DRE arises in the optimal control problem
with linear dynamics

ξ̇s = fs(ξs, us)
.
= A(s)ξs + σ(s)us, ξt = x ∈ Rn (2)

and the following payoff function consisting of the integral and
terminal payoffs,

JTt (x, u)
.
=

∫ T

t
ls(ξs, us) ds + φ(ξT ), where (3)

ls(ξ , υ)
.
=

1
2
ξ ′C(s)ξ −

1
2
|υ|

2 and (4)

φ(ξ)
.
=

1
2
ξ ′p(T )ξ , for all ξ ∈ Rn, υ ∈ Rm. (5)

Then, the optimal payoff or the value function is also quadratic
given by,

V (t, x) .= sup
u∈L2(t,T )

JTt (x, u) =
1
2
x′p(t)x, (6)

and p(t) follows the DRE (1). In order to ensure the existence and
the regularity of the value function and for the development to
follow, we make following assumptions.

Let T̄ < T . We assume that ∀t ∈

T̄ , T


, A(t), C(t),

Σ(t) ∈ Rn×n are piecewise continuous, locally bounded
functions of time t . Moreover, Σ(t), C(t) are symmetric
and Σ(t) .

= σ(t)σ (t)′ ≽ 0. We also assume that the
underlying dynamic system (2) is controllable. Since the
DRE may exhibit finite time blowup, we assume that for
t ∈


T̄ , T


there exists a solution of DRE (1) with the

terminal condition p(T ) = PT . We denote this solution
by Pt for the ease of notation.

(7)

Nowwe shall obtain the fundamental solution for DRE (1) through
the following generalization of the above optimal control problem.
We assume the same dynamics as (2), and assume the following
payoff function in which the integral payoff ls is as defined in (4)
and the terminal payoff is parametrized as below by z ∈ Rn,

JTt (x, u; z)
.
=

∫ T

t
ls(ξs, us) ds + φ(ξT ; z), where

φ(ξ ; z) .= φz(ξ)
.
=

1
2
ξ ′PT ξ + ξ ′ST z +

1
2
z ′QT z

(8)

for all ξ ∈ Rn.
Note that for the terminal payoff, we have reused the notation

and (5) is the special case of φ(ξ ; 0) above, when p(T ) = PT .
The optimal payoff or the value function is defined as

V (t, x; z) .= V z
t (x)

.
= sup

u∈L2(t,T )
JTt (x, u; z) (9)

for all x, z ∈ Rn and t ∈ (T̄ , T ]. Nowwe state an important theorem
regarding such a value function, which is proved in the Appendix.

Theorem 1. Assume (7), and assume that PT ,QT are symmetric ma-
trices and ST is invertible. Then for any z ∈ Rn, the value function (9) is
given by.

V (t, x; z) =
1
2
x′Ptx + x′Stz +

1
2
z ′Qtz (10)

where Pt , St ,Qt evolve as per

−Ṗt = A(t)′Pt + PtA(t)+ C(t)+ PtΣ(t)Pt

−Ṡt = (A(t)+Σ(t)Pt)′St (11)
−Q̇t = S ′

tΣ(t)St ,

and satisfy the boundary conditions PT , ST and QT , respectively, at
time t = T . Further, the optimal control at a state ξ̃s at time s is

ũs = σ(s)′(Psξ̃s + Ssz), (12)

and the corresponding optimal trajectory ξ̃ , starting at ξ̃t = x and
evolving as per the control (12) satisfies

S ′

t2 ξ̃t2 + Qt2z = S ′

t1 ξ̃t1 + Qt1z, (13)

for T̄ < t1 < t2 ≤ T . Further, Qt1 − Qt2 ≻ 0 and St is invertible for
t ∈ (T̄ , T ].

Proof. Lemmas 20–23 in the Appendix, together prove the above
result. �

Remark 2. Since St1 and St2 are invertible, (13) suggests a one–one
and onto relation between start and end of optimal trajectories, ξt1
and ξt2 for all z. Thus ∀y ∈ Rn there exists a x = S−1′

t2 (S ′
t1y+ (Qt1 −

Qt2)z) such that optimal trajectory x̃t starting at x̃t1 = x, ends with
y. Thus every y ∈ Rn is an optimal point for some initial condition.

3. Max-plus fundamental solution

Given t1, t2 ∈ R, t1 < t2, system trajectory starting at ξt1 = x
and a general terminal payoff function ψ : Rn

→ R, let us define
the operator,

S
t2
t1 [ψ](x) .= sup

u∈L2(t1,t2)

∫ t2

t1
ls(ξs, us) ds + ψ(ξt2). (14)

We can restate (9) and (8) using above operator. Noting that
V z
T (x) = φz(x), as defined in (8), we have for all t ∈ (T̄ , T ]

V z
t (x) = ST

t [φz
](x) = ST

t [V z
T ](x).

It is well known that operators S
t2
t1 form a semigroup. Thus if

t1 ≤ t ≤ t2 ≤ T , then S
t2
t1 [ψ] = St

t1 [S
t2
t [ψ]], which is the

celebrated dynamic programming principle for this problem. That
is with t2 = T ,

V z
t1(x) = ST

t1 [φ
z
](x) = St

t1 [S
T
t [φz

]](x) = St
t1 [V

z
t ](x)

= sup
u∈L2(t1,t)

∫ t

t1
ls(xs, us) ds + V z

t (ξt). (15)

If we define a ⊕ b .
= max(a, b) and a ⊗ b .

= a + b, then
it is well known that (R ∪ {−∞},⊕,⊗) forms a commutative
semifieldwhich is referred to as themax-plus algebra (see Baccelli,
Cohen, Olsder, & Quadrat, 1992; Helton & James, 1999; Litvinov &
Maslov, 1998, for a fuller discussion).We can extend this algebra to
functions so as to define themax-plus vector space. Let [a⊕b](x) =

max(a(x), b(x)) and a(x)⊗ k = a(x)+ k, where a, b : Rn
→ R and

k ∈ R. Maslov (1987) proved that the above semigroup is linear in
max-plus algebra. Thus using above notation

ST
t1 [ψ1 ⊕ ψ2](x)

.
= S

t2
t1 [max(ψ1, ψ2)](x)

= max{St2
t1 [ψ1](x), S

t2
t1 [ψ2](x)}

.
= ST

t1 [ψ1](x)⊕ ST
t1 [ψ2](x)

and

ST
t1 [k ⊗ ψ1](x)

.
= S

t2
t1 [k + ψ1](x)

= k + S
t2
t1 [ψ1](x)

.
= k ⊗ ST

t1 [ψ1](x).
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