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This paper deals with discrete-time switched linear systems and considers the problem of computing
an upper bound to the dwell time ensuring a pre-specified root mean square (RMS) gain. As a natural
consequence of treating general systems of this class in terms of the order and the number of subsystems,
only sufficient conditions are worked out. They depend on the complete separation of the stabilizing and
anti-stabilizing solutions of the algebraic Riccati equation associated to each subsystem. Moreover, as

positive features, it is shown that the dwell time preserving the specification can be calculated through
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linear matrix inequalities (LMIs) and line search, being thus numerically solvable in polynomial time, and
this allows the treatment of stable switched linear systems which do not admit a common Lyapunov
function. The case of a guaranteed RMS gain for arbitrary switching signals is also addressed. A simple
academic example constituted by three subsystems of third order is included for illustration.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Hybrid and switched dynamic systems have received a great
deal of attention in recent decades. The stability analysis of
continuous-time switched linear systems has been addressed by
many authors; see, for example, Branicky (1998), Hockerman-
Frommer, Kulkarni, and Ramadge (1998), Hespanha and Morse
(1999), Hespanha (2004), Johansson and Rantzer (1998), Wirth
(2005) and Ye, Michel, and Hou (1998). General results on this
topic are presented in the book Blanchini and Miani (2008) and
in the survey papers Margaliot (2006) and Shorten, Wirth, Mason,
Wulff, and King (2007). More specifically, in Hespanha (2004),
the interested reader can find a collection of results on uniform
stability of switched systems. The reader is also requested to see
DeCarlo, Branicky, Pettersson, and Lennartson (2000), Liberzon
(2003) and Liberzon and Morse (1999) for a fairly complete review
of the stability of continuous-time switched linear systems, where
special attention is given to the case of switching between two
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linear systems. For control synthesis, see Geromel, Colaneri, and
Bolzern (2008), Ishii, Basar, and Tempo (2005), Morse (1996) and
Wicks and DeCarlo (1997). In this paper, the stability conditions
for discrete-time linear switched systems provided in Geromel
and Colaneri (2006) are used. They help in determining an upper
bound to the minimum dwell time that preserves stability and are
expressed in terms of linear matrix inequalities (LMIs) plus a scalar
variable, being thus solvable in polynomial time. For discrete-time
switched systems, see also Lin and Antsaklis (2008), Ji, Wang,
and Xie (2005), Zhai, Hu, Yasuda, and Michel (2002), Daafouz
and Bernussou (2001), Liberzon (2009), Xie and Wang (2003) and
Zhai (2001), where several results on stability analysis and control
synthesis are presented.

This paper deals with the discrete-time switched linear system
with the following state space representation, evolving from zero
initial condition,

X(E+1) = Agx(t) + Byyw(®),  x(0) =0 (1)
Y(®) = Cox(t) + Dyeyw(t), (2)

defined for all integers t > 0, where x(t) € R" is the state, w(t)
€ R™ is the exogenous input, y(t) € R’ is the output, and
o(t) : t > 0 — {1,...,N} is the switching rule. In addition
to the papers already cited, in Lee and Dullerud (2006a,b),
nonconservative stability analysis, RMS gain calculation, and
synthesis of switched controllers are provided by using path-
dependent Lyapunov functions. The focus of the present paper
is on the determination of the RMS gain by considering some


http://dx.doi.org/10.1016/j.automatica.2011.02.035
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:colaneri@elet.polimi.it
mailto:bolzern@elet.polimi.it
mailto:geromel@dsce.fee.unicamp.br
http://dx.doi.org/10.1016/j.automatica.2011.02.035

1678 P. Colaneri et al. / Automatica 47 (2011) 1677-1684

classes of (nonperiodic) switching rules characterized by a given
minimum dwell time d. Arbitrary switching is also considered
by enforcing d = 1, in which case the sufficient conditions of
Daafouz and Bernussou (2001) are obtained. Compared with the
procedure in Lee and Dullerud (2006b), applicable to more general
classes of switching signals, the conditions provided in the present
paper, though generally more conservative, are easier to check,
especially for large values of N and d. Notably, the numerical
complexity of the proposed algorithm does not depend on d. This
is a consequence of self-contained results on the difference Riccati
equation, in particular the extension to discrete-time systems of
the ordering property valid for continuous-time ones provided in
Hespanha (2003). For the continuous-time counterpart of RMS gain
calculation, see also Geromel and Colaneri (2010).

Let Dy be the set of all switching policies with dwell time
greater than or equal to d steps, that is, the set of all o(t) for
which the time interval between successive switchings satisfies
tyr1 —te > d > 0.Given a positive value of the attenuation level y,
the main goal is to provide conditions for a guaranteed RMS gain
with dwell time specification, i.e.

J(@) = sup llyl; — y*llwli3 <0, (3)
wElz

for all o € Dy. The complete solution to (3) is difficult to obtain,
since the global solution to the optimal control problem
sup J(o) = sup [lyl5 —y*llwl3
oeDy oeDy,wel
is difficult to calculate due to the algebraic structure of the set
Dy for any dwell time d € N fixed. Blondel and Tsitsiklis (2000)
and Xu and Antsaklis (2004) give an idea of the difficulties to be
faced if we want to solve optimal control problems of this class
with the state space dimension n and the number of subsystems N
taken arbitrarily; see also Margaliot and Hespanha (2008). Hence,
we will concentrate on the determination of a suboptimal solution
and validate its quality through an example. The conservativeness
of the proposed conditions to assure the validity of (3) may be
tested by imposing that (3) has to hold for a subset 3 C Dy
composed of all periodic switching policies with period d >
0. Moreover, the related conditions appearing in Colaneri and
Geromel (2008), based on worst-case input determination, are
adequately addressed and corrected.

Hence, our main interest is on the numerical determination of
the function

d.(y) = inf{d:J(0) <0V o € Dy} (4)

that gives the minimum dwell time associated to each prescribed
RMS gain. Since, as already mentioned, this function is not simple
to calculate exactly, our main purpose is to determine its bounds
dp(y) < d.(y) < d(y), where the upper bound follows from
sufficient conditions for J(c) < 0 Vo € Dy to hold, and the
lower bound is obtained from (4) with 9D, replaced by the set of
all piecewise periodic functions £;.

The notation is standard. Capital letters denote matrices, small
letters denote vectors, and small Greek letters denote scalars.
For matrices or vectors, (') indicates transpose. For symmetric
matrices, X > 0 (>0) indicates that X is positive definite
(nonnegative definite). The sets of real and natural numbers
including zero are denoted by R and N, respectively. The set K is
defined as K = {1, ..., N}. The squared norm of a trajectory z(t)
defined for all t > 0 equals ||z]|3 = Y72, z(t)'z(t). All trajectories
with finite norm, that is ||z[|3 < oo, characterize the set I,. For the
sake of simplifying the notation of partitioned symmetric matrices,
the symbol (e) denotes generically each of its symmetric blocks.
The convex combination of matrices with the same dimension
{Fy,...,Fy}isdenoted by F;, = Z;V:] AjFj, where A belongs to the

unitary simplex A composed by all nonnegative vectors A € RV
such that Z]N:l A= 1

2. Preliminaries

This section is entirely devoted to the analysis of the Fo,
problem for linear time-invariant systems and to provide some
properties of the difference and algebraic Riccati equations to be
extensively used in what follows. The discrete-time #,, problem
can be stated as

[o¢]

sup Y (y(©)'y(®) — Y w(®) w(t)), (5)
0

wely 1
subject to

x(t + 1) = Ax(t) + Bw(t),
y(t) = Cx(t) + Dw(t).

All indicated matrices of compatible dimensions and the initial
state X, € R" are given. Under mild standard assumptions on the
open-loop system, namely stability, minimality of the state space
representation, reachability, and observability, this problem can
be solved with no difficulty, and its optimal solution is provided
by the positive definite stabilizing solution of the algebraic Riccati
equation. As will be clear in what follows, we have an interest in
rewriting (5) in the equivalent form

x(0) = xq

tey1—1
sup{ Y Oy — y2w®) ) + vk+1(x<r,<+1>>}

wel t=ty,

= v (x(ty)), (6)

where t,1 > t; + 1 are successive time instants for all k € N
starting from t; = 0.The importance of this dynamic programming
recursive equation is that vg(xo) provides the optimal cost of (5).
In addition, if in Eq. (6) the sign = is replaced by the sign <, then
vo(Xg) becomes an upper bound of the optimal cost of (5). Taking
into account that the dynamic system is time-invariant, assuming
that the difference Riccati equation

m(t) =ATI(t + 1A+ C'C+ (ATI(t + 1)B+ C'D)

x (y*1—=DD—BM(t+1)B) (At +1)B+CD)  (7)

admits a positive definite solution in the time interval [0, 7],
where 7, = tyr1 — tx > 0, then Zy = I1(0) determined from
the final condition Zy,; = I1(ty) allows us to conclude that the
quadratic function v, (x) = x'Zx solves the recursive equation (6)
and by consequence (5). Indeed, in this case, itis known thatZ, = P
for all k € N, where P € R™" is the positive definite stabilizing
solution of the associated algebraic Riccati equation. Hence, in the
context of switched linear systems, the existence of a solution of
the #,, difference Riccati equation is a central and important issue.
The associated algebraic Riccati equation is

T =ATA+CC+ (ATIB+C'D)
x (yI —D'D—BMB)" (AIB+CD) . ®)

We say that a solution of (7) or (8) is feasible whenever it satisfies
y2—-D'D—B'II(t+1)B > Oforallt € [0, 7) or y2I—-D'D—B'IIB >
0, respectively. For simplicity, let us introduce the notation

A(t+1) = (y21 =DD—BII(t+1B)

L(t+1) = A(t+1) (ATI(t + DB+ CD)

H({t+ 1) =A+BL(t+1).

Similarly, for the algebraic Riccati equation (8), let A =

(y—DD—BMB)"',L=A(AMB+CD),andH = A+ BL.
We are particularly interested in two positive definite feasible

solutions of the algebraic Riccati equation (8), denoted P and

P,, referred to as the stabilizing and anti-stabilizing solutions,
respectively. With a little abuse of notation, we still use (A, L, H)
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