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a b s t r a c t

In this paper, we consider sensor data scheduling with communication energy constraint. A sensor has to
decide whether to send its data to a remote estimator or not due to the limited available communication
energy. We construct effective sensor data scheduling schemes that minimize the estimation error and
satisfy the energy constraint. Two scenarios are studied: the sensor has sufficient computation capability
and the sensor has limited computation capability. For the first scenario, we are able to construct the
optimal scheduling scheme. For the second scenario, we are able to provide lower and upper bounds of
the minimum error and construct a scheduling scheme whose estimation error falls within the bounds.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Networked sensing and control systems have gained much in-
terest in the past decade (Hespanha, Naghshtabrizi, & Xu, 2007).
Applications of networked sensing and control systems are found
in a growing number of areas, including autonomous vehicles, en-
vironment and habitat monitoring, industrial automation, trans-
portation, etc.

In some networked sensing applications, sensors are battery-
powered, hence only limited energy is available for data collection
and transmission. Consequently a sensor cannot transmit its
measurement data at all times due to the energy constraint, and
it has to decide whether to send its current data packet or not. This
decision-making process is referred to as sensor data scheduling.

On one extreme, sending no data consumes no energy. How-
ever, without receiving and processing the sensor measurement
data, the estimation error of the underlying parameters may grow
rapidly which is undesirable in situations such as target tracking
and rescue and surveillance. On the other extreme, sending data
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at all times assures that the estimation error is a minimum but
at the price of high energy cost. The latter case may not even be
feasible due to the energy constraint. Thus proper schedule of the
sensor data transmission is needed such that the energy constraint
is satisfied and the estimation error is kept as small as possible.
Constructing such a proper sensor data scheduling scheme is the
focus of this paper.

Sensor scheduling has been a hot topic of research for many
years. Different formulations and approaches have been proposed.

Baras and Bensoussan (1988) studied nonlinear state estima-
tion problem and considered scheduling a set of sensors so as to
optimally estimate a function of an underlying parameter. Walsh
andYe (2001) andWalsh, Ye, andBushnell (2002) studied the prob-
lem of when to schedule which process to access to the network so
that all processes remain stable. Gupta, Chung, Hassibi, and Mur-
ray (2006) considered a different scheduling problem where there
is one process and multiple sensors. They proposed a stochastic
sensor scheduling scheme and provided the optimal probability
distribution over the sensors to be selected. Tiwari, Jun, Jeffcoat,
and Murray (2005) studied the problem of sensor scheduling for
discrete-time state estimation using a Kalman filter. They consid-
ered two processes and one sensor and proposed schemes to de-
termine which process that the sensor needs to observe in order
to minimize the total estimation error. Shi, Epstein, Sinopoli, and
Murray (2007) combined the ideas from Gupta et al. (2006) and
Tiwari et al. (2005) and proposed two novel scheduling schemes
in a sensor network by employing feedback from the estimator to
the sensors. Hovareshti, Gupta, and Baras (2007) considered sen-
sor scheduling using smart sensors, i.e., sensors with some mem-
ory and processing capabilities, and demonstrated that estimation
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Fig. 1. System block diagram.

performance can be improved. Sandberg, Rabi, Skoglund, and Jo-
hansson (2008) considered estimation over a heterogeneous sen-
sor network. Two types of sensors were investigated: the first type
has low-quality measurement but small processing delay, while
the second type has high-quality measurement but large process-
ing delay. Using a time-periodic Kalman filter, they showed how
to find an optimal schedule of the sensor communication. Similar
work has been done by Arai, Iwatani, and Hashimoto (2008, 2009)
where fast sensor scheduling was proposed for networked sensor
systems. Savage and Scala (2009) considered the problem of opti-
mal sensor scheduling for scalar systems that minimizes the ter-
minal error.

The main contributions of this paper and comparison with
existing work from the literature are summarized as follows.

(1) We develop sensor scheduling schemes that provide the best
estimation quality subject to sensor energy constraint. To the
best of our knowledge, the problem formulation is novel.

(2) We focus on scheduling of the sensormeasurement data, while
most of the existing work focused on scheduling of a set of
(heterogeneous) sensors.

(3) Since the solution space contains infinite scheduling schemes
which are discrete in nature, most existing work proposed al-
gorithms that typically generate a suboptimal schedule, and
nothing in general is said on the optimality of the proposed
schedule. However, in this paper, when the sensor has suf-
ficient computation capability, we are able to construct an
optimal scheduling scheme; when the sensor has limited com-
putation capability, we are able to provide a lower and upper
bound of the estimation error for the optimal scheme.

The remaining of the paper is organized as follows. In Section 2,
we introduce the system models and problem setup. In Section 3,
we define some frequently used notations and provide some
preliminaries on the Kalman filter. In Section 4, we provide the
necessary condition for optimal scheduling schemes. In Section 5,
we study the scenario when the sensor has sufficient computation
and present an optimal scheduling scheme. In Section 6, we study
the scenario when the sensor has limited computation and present
a suboptimal schedule. Concluding remarks are given in the end.

Notations. Z is the set of non-negative integers. k is the time index.
N is the set of natural numbers. Rn in n-dimensional Euclidian
space. Sn

+
is the set of n by n positive semi-definite matrices. When

X ∈ Sn
+
, we simply write X ≥ 0; when X is positive definite, we

write X > 0. For functions f , f1, f2 : Sn
+

→ Sn
+
, f1 ◦ f2 is defined as

f1 ◦ f2(X) , f1(f2(X)) and f t is defined as f t(X) , f ◦ f ◦ · · · ◦ f  
t times

(X).

2. Problem setup

2.1. System models

Consider the following discrete linear time-invariant system
(Fig. 1)

xk+1 = Axk + wk, (1)
yk = Cxk + vk. (2)

In the above equations, xk ∈ Rn represents the current state of the
process, yk ∈ Rm is the measurement data taken by the sensor at

time k, wk ∈ Rn and vk ∈ Rm are zero-mean Gaussian random
noises with covariances E[wkw

′

j] = δkjQ ≥ 0, E[vkv
′

j ] = δkjR > 0,
E[wkv

′

j ] = 0 ∀j, k, where δkj = 0 if k ≠ j and δkj = 1 otherwise.
The initial state x0 is also a zero-meanGaussian randomvector that
is uncorrelated with wk or vk and has covariance Π0 ≥ 0. Further
assume that (A,

√
Q ) is controllable and (C, A) is observable.

Assume that the sensor communicates its data packet with a
remote estimator via a network. Let

Yk = {y1, . . . , yk} (3)

be all the measurements collected by the sensor from time 1 to
k. The sensor’s local state estimate x̂sk and its corresponding error
covariance P s

k are calculated as

x̂sk = E[xk|Yk], (4)

P s
k = E[(xk − xsk) (xk − xsk)

′
|Yk]. (5)

Most commercially available sensor nodes nowadays have differ-
ent transmission power levels (Xiao, Cui, Luo, & Goldsmith, 2006).
Reliable data flow is typically achieved using high power transmis-
sion. Low power transmission may cause unreliable data flow and
data packet drops are typical consequences. For simplicity, we as-
sume the sensor operates in two energy levels. When the sensor
uses a high energy ∆ at time k, the data packet can be success-
fully delivered to the remote estimator; when the sensor uses a
low energy δ, the data packet can be successfully delivered only
with probability λ ∈ (0, 1). We assume both ∆ and δ are rational
numbers. When δ energy is used, let λk = 1 or 0 be the indicator
function whether the data packet arrives at the estimator success-
fully or not. Assume λk’s are i.i.d Bernoulli random variables and
E[λk] = λ.

Let γk = 1 or 0 be the sensor’s decision variable at time k
whether it should send its current data packet using∆ or δ energy.
Let θ denote a scheduling scheme that defines the value of γk at
each k. Clearly the set of all scheduling schemes consists of 2k

different schemes up to time k, most of which are unstructured
and are intractable to analyze. We thus focus on the subset of all
periodic scheduling schemes which we denote as Θ .

Denote Dk(θ) as the set of all data packets received by the
estimator up to time k. In general Dk(θ) could be different from
Yk defined in Eq. (3) due to the possible data packet drops. Similar
to calculating x̂sk and P s

k , for a given θ , the state estimate x̂k(θ) and
its associated error covariance Pk(θ) at the remote state estimator
are calculated as

x̂k(θ) = E[xk|Dk(θ)], (6)

Pk(θ) = E[(xk − x̂k)(xk − x̂k)′|Dk(θ)]. (7)

For simplicity, we shall write x̂k(θ) as x̂k, etc., when the underlying
scheduling scheme θ is clear from the context.

2.2. Problems of interest

For a given θ , define J(θ) as the average energy cost associated
with it, i.e.,

J(θ) , lim
N→∞

1
N

N−
k=1

(γk∆ + (1 − γk)δ), (8)

and Pa(θ) as the average expected estimation error covariance, i.e.,

Pa(θ) , lim
N→∞

1
N

N−
k=1

E[Pk]. (9)

LetΨ be a given energy budget. Assume thatΨ is a rational number
and δ ≤ Ψ ≤ ∆.

In this paper, we are interested in finding a periodic scheduling
scheme θ that solves the following optimization problem.
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