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a  b  s  t  r  a  c  t

Since  the  factors  contributing  to  crash  frequency  and  severity  usually  differ, an integrated  model  under
the multinomial  generalized  Poisson  (MGP)  architecture  is proposed  to analyze  simultaneously  crash
frequency  and  severity—making  estimation  results  increasingly  efficient  and  useful.  Considering  the
substitution  pattern  among  severity  levels  and  the  shared  error  structure,  four  models  are  proposed
and  compared—the  MGP  model  with  or without  error  components  (EMGP  and  MGP models,  respec-
tively)  and  two nested  generalized  Poisson  models  (NGP  model).  A  case  study  based  on  accident  data  for
Taiwan’s  No.  1 Freeway  is  conducted.  The  results  show  that  the EMGP  model  has  the  best  goodness-of-fit
and  prediction  accuracy  indices.  Additionally,  estimation  results  show  that factors  contributing  to  crash
frequency  and  severity  differ markedly.  Safety  improvement  strategies  are  proposed  accordingly.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

To improve traffic safety, numerous statistical models have been
developed that identify factors contributing to crash frequency
and severity. Most identify risk factors for either crash frequency
or severity independently. When modeling crash frequency (the
number of accidents on roadway segments or at intersections over
a specified period), a considerable number of studies have used
various methodological approaches. Due to the discrete and non-
negative integer character of accident counts, count-data models
such as the Poisson model (e.g., Jones et al., 1991; Miaou, 1994;
Shankar et al., 1997), negative binomial model (e.g., Hadi et al.,
1995; Shankar et al., 1995; Poch and Mannering, 1996; Milton
and Mannering, 1998; Lord, 2006; Malyshkina and Mannering,
2010), Poisson lognormal model (e.g., Miaou et al., 2005; Lord and
Miranda-Moreno, 2008), Gamma  model (e.g., Oh et al., 2006), gen-
eralized Poisson model (e.g., Dissanayake et al., 2009; Famoye et al.,
2004) as well as zero-inflated modeling and other flexible modeling
techniques (e.g., Abdel-Aty and Radwan, 2000; Wang and Abdel-
Aty, 2008; Park and Lord, 2009; Anastasopoulos and Mannering,
2009; see Lord and Mannering, 2010 for elaborate and complete
reviews) have been applied to model crash counts.

Crash frequencies are commonly collected by severity on
relatively homogenous roadway segments, supporting the devel-
opment of crash count models. Thus, crash data are typically
classified according to severity (e.g., property damage only,
injury, and fatality) or collision type (e.g., rear-end, head-on,
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sideswipe, and right angle). With this data segmentation, sepa-
rate severity–frequency models are developed for each accident
severity level. In this way, a series of negative binomial accident
frequency models were developed for each crash severity level to
predict the number of accidents at each severity level on roadway
segments. Unfortunately, such an approach can generate a statis-
tical problem in that interdependence due to latent factors likely
exists across crash rates at different severity levels for a specific
roadway segment (Ma et al., 2008). For example, an increase in
number of accidents that are classified as having a certain severity
level is also associated with changes in the number of accidents
that are classified with other severity levels, setting up a correla-
tion among various injury-outcome crash frequency models (Lord
and Mannering, 2010).

Considerable research effort has focused on modeling accident
severity from an individual perspective using such methodolog-
ical approaches as logistic regression (e.g., Lui et al., 1988; Yau,
2004), bivariate models (e.g., Saccomanno et al., 1996; Yamamoto
and Shankar, 2004), the multinomial and nested logit structures
to evaluate accident-injury severities (e.g., Shankar et al., 1996;
Chang and Mannering, 1999; Carson and Mannering, 2001; Lee
and Mannering, 2002; Ulfarsson and Mannering, 2004; Khorashadi
et al., 2005), and the discrete ordered probit model (e.g., O’Donnell
and Connor, 1996; Duncan et al., 1998; Renski et al., 1999;
Kockelman and Kweon, 2002; Khattak et al., 2002; Kweon and
Kockelman, 2003; Abdel-Aty, 2003). For more details on accident
severity models may  refer to Savolainen et al. (2011).

Although these models have been applied by a number of
researchers with a considerable success, Milton et al. (2008) indi-
cated that these studies relied heavily on detailed data in individual
accident reports and they have been proved to be difficult to use
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in safety programming because a large number of event-specific
explanatory variables need to be estimated to produce useable
severity forecasts. Moreover, significant contributory factors in
the model are usually not closely related to traffic manage-
ment strategies, roadway geometrics, and weather-related factors;
therefore, the corresponding countermeasures are difficult to pro-
pose accordingly. Furthermore, as different data scales are used by
frequency models and the severity model, integration is extremely
difficult.

Obviously, crash frequency and severity are two key indices
that measure risk for a roadway segment. Either one only gener-
ates partial insights for crash risk. Increased scope and in-depth
insights cannot be obtained without considering both indices
together. Thus, two possible integrated modeling approaches were
attempted. The first approach uses a conventional frequency
model to predict total number of crashes and a severity model,
such as the multinomial logit model, nested logit model, ordered
probit model, or mixed logit model, to predict aggregate sever-
ity probability (e.g., Yamamoto et al., 2008; Kim et al., 2008;
Milton et al., 2008). However, the assumption that crash fre-
quency and severity are mutually independent still exists. The
second approach applies multivariate regression models to pre-
dict crash frequencies for different severity levels. Multivariate
regression models simultaneously develop crash frequency mod-
els by severity (Bijleveld, 2005; Ma  and Kockelman, 2006; Song
et al., 2006; Park and Lord, 2007; Ma  et al., 2008; Aguero-Valverde
and Jovanis, 2009; El-Basyouny and Sayed, 2009; Ye et al., 2009)
to overcome the correlation problem among crash frequencies at
different severity levels. However, this approach requires a com-
plex estimation procedure combined with a subjectively preset
correlation matrix of severity levels, making field validation very
difficult.

Another drawback of the multivariate modeling approach is its
inability to grasp associated changes related to severity and fre-
quency variables only. If one fails to observe separately the effects of
factors contributing to crash frequency and severity, the multivari-
ate model may  be partly limited for practical program evaluation.
An appealing idea is to view risk factors according to their accident
descriptive components (i.e., severity and frequency) individually
under an integrated framework. However, expected difficulties
arise when analyzing subjects and procedures. Consequently, using
a conceptual model combining both crash frequency and severity
is worthwhile.

Thus, this paper aims to develop a novel multinomial gen-
eralized Poisson (MGP) model to simultaneously model crash
frequency (count data) and severity (ratio data). Furthermore, the
proposed model considers the substitution pattern among sever-
ity levels and constructs a shared error structure as a correlation
matrix through error components specified under an integrated
model framework. A case study of Taiwan freeway crash data is
utilized to assess the applicability of the proposed model. The
remainder of this paper is organized as follows. Section 2 presents
the proposed MGP  model. Section 3 addresses data collection and
descriptive statistics of the accident dataset for Taiwan’s No. 1
Freeway. Section 4 presents model estimation results and compar-
isons. Section 5 discusses safety implications based on estimation
results. Section 6 gives concluding remarks and suggestions to fur-
ther research.

2. The proposed models

The MGP  model is an extension of the multinomial-Poisson (MP)
regression model (Terza and Wilson, 1990). In the context of crash
frequency and severity modeling, we assume that accidents can be
classified into a finite number of clusters according to severity levels

and that the frequency of each severity level follows a conditional
multinomial distribution, which is expressed as follows:
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where f (·) is the conditional probability of Y; Y = [y1, y2,. . .yj,. . .,yJ]

and
∑J

j=1yj = N; yj = 0, 1, 2,. . .,  ∞,  for j = 1, 2,. . .,  J, is a random vector
representing the observed crash counts of segment t within a given
period (e.g., 1 year) at severity level j; J is the total number of sever-
ity levels determined in advance; �1, �2,. . .,  �J are multinomial
probabilities of severity levels 1, 2, . . .,  J, respectively; �j = yj/N and
�1 + �2 + . . . + �J = 1; and N is the total number of accidents across
different severity levels of segment m within a given period. Thus,
the conditional multinomial distribution can be used to determine
crash frequencies at various severity levels, i.e., y1, y2,. . .,  yJ, given
total number of accidents, N. Furthermore, the joint probability of
these crash frequencies h(y1, y2,. . .,  yJ) can be expressed as the
product of conditional probability and marginal probability:
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where g(·) = g
(∑J
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)

is the marginal probability of crash

counts. Terza and Wilson (1990) assumed that the marginal (uncon-
ditional) probability has the following Poisson distribution:

g(·) = �N exp(−�)
N!

(3)

where g(·) is the probability that N accidents occurred, and � is the
expected number of accidents. For estimation purposes, � is usually
specified as

� = exp(ˇ′X) (4)

where X and ˇ′ are vectors of explanatory variables and estimated
parameters, respectively. The formulation of the multinomial Pois-
son (MP) model is then derived by substituting Eqs. (1) and (3) into
Eq. (2).

The Poisson model assumes that variance equals mean. If
observed data exhibit over-dispersion (under-dispersion), this
assumption does not hold. This leads to estimation inefficiency
because inference was invalidated by unreliable estimated stan-
dard errors. We  can relax this assumption using the generalized
Poisson (GP) model (Famoye et al., 2004; Dissanayake et al., 2009).
The probability function of total accidents at any segment, N, can
be written as Eq. (5):
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where � is the dispersion parameter. If � > 0, the GP model indi-
cates the over-dispersion feature in the empirical data. If � = 0, the
probability function degenerated to the Poisson model. In contrast,
if � < 0, the GP model denotes the under-dispersion feature in the
empirical data. All other involved arguments associated with Eq.
(5) are as defined previously. The mean and variance of N are rep-
resented by Eqs. (6) and (7),  respectively:

E(N|X) = � (6)

V(N|X) = �(1 + ��)2 (7)

According to Eq. (6),  the probability function in Eq. (5) degener-
ates into the original Poisson model as � = 0. Hence, the GP model is
a generalized Poisson model. Interested readers can refer to Famoye
(1993) for detailed proofs. In accordance with the derivation by
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