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The cubature Kalman filter (CKF) is a relatively new addition to derivative-free approximate Bayesian
filters built under the Gaussian assumption. This paper extends the CKF theory to address nonlinear
smoothing problems; the resulting state estimator is named the fixed-interval cubature Kalman smoother
(FI-CKS). Moreover, the FI-CKS is reformulated to propagate the square-root error covariances. Although
algebraically equivalent to the FI-CKS, the square-root variant ensures reliable implementation when
committed to embedded systems with fixed precision or when the inference problem itself is ill-
conditioned. Finally, to validate the formulation, the square-root FI-CKS is applied to track a ballistic target

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In Arasaratnam and Haykin (2009), Arasaratnam and Haykin
described a new nonlinear filter named the Cubature Kalman
Filter (CKF), for hidden state estimation based on nonlinear
discrete-time state-space models. Like the celebrated Kalman filter
for linear Gaussian models, an important virtue of the CKF is
its mathematical rigor. This rigor is rooted in the third-degree
spherical-radial cubature rule for numerically computing Gaussian-
weighted integrals. A unique characteristic of the CKF is the fact
that the spherical-radial cubature rule leads to an even number
of equally-weighted cubature points (2n points, where n is the
dimensionality of the state vector). These cubature points are
distributed uniformly on a sphere centered at the origin.

In a related context, the unscented Kalman filter (UKF) due
to Julier et al. has an odd number of sigma points ((2n + 1)
points). These sigma points are distributed on an ellipsoid with a
non-zero center point (Julier, Ulhmann, & Durrant-Whyte, 2000).
Whereas the cubature points of the CKF follow rigorously from
the spherical-radial cubature rule, the sigma points of the UKF
are the result of the so-called unscented transformation applied to
inputs. Theoretically, there is a fundamental difference between
the CKF and the UKF. The CKF follows directly from the cubature
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rule whose important property is that it does not entail any free
parameter. In contrast, the UKF purposely introduces a nonzero
scaling parameter, commonly denoted by k. Due to k, a nonzero
center point is often associated with a weight higher than that of
the remaining set of sigma points (see Section VII of Arasaratnam
and Haykin (2009) and Section III of Arasaratnam, Haykin, and
Hurd (2010) for more details). Although the inclusion of the free
parameter « gives freedom to the UKF when it is non-zero, it
destroys many desired numerical and theoretical properties of the
UKF.

The parameter x = (3 — n) of the ‘plain’ UKF is zero only
when the state dimensionality is three (by ‘plain’ we mean the
UKF without using a scaled unscented transformation). For this
special case, what is truly interesting is that the sigma point set
boils down to the cubature point set and the algorithmic steps of
the plain UKF become identical to that of the CKF. As such, the
CKF may be considered as a special case of the UKF in an algebraic
sense. However, it is ironic that the observation for setting « equal
to zero has been largely overlooked in the literature on nonlinear
filtering for the past many years. Note that the authors of Wu,
Hu, Wu, and Hu (2006) attempted to rederive the UKF from the
integration perspective using monomial rules. However, a direct
use of monomial rules leads to a free parameter similarly to the
original derivation proposed by Julier et al. (2000). It is unfortunate
again that the authors have completely ignored the possibility of
setting the free parameter u; in (13) of Wu et al. (2006) to be
u; = +/d. This choice leads to the CKF equations, which in turn
solves the inherent stability issue of the UKF.

It is well-known that the state estimate of a smoother algorithm
is more accurate than that of the corresponding filter counterpart
(Meditch, 1969). The motivation of this paper is to derive a
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CKF-based smoothing algorithm. The novel contributions of this
paper are as follows. (i) Application of cubature integration
to existing integration-based smoothing theory. The resulting
algorithm is named the fixed-interval cubature Kalman smoother
(FI-CKS). (ii) For improved numerical stability in systems with
limited precision, we go on to develop a square-root version of
the FI-CKS. The square-root FI-CKS propagates the square-roots of
the error covariances. (iii) Application of the square-root FI-CKS
to target tracking. The paper is organized as follows. Section 2
reviews the optimal yet conceptual Bayesian inference solution.
Section 3 reviews the CKF briefly. Section 4 derives a suboptimal
fixed-interval smoother, which we have named the Fixed-Interval
Cubature Kalman Smoother (FI-CKS). We go on to modify the FI-
CKS in a way that it propagates the square-roots of covariances for
improved numerical stability in Section 5. Section 6 validates the
square-root FI-CKS formulation by applying it to a target tracking
problem. Section 7 concludes the paper with final remarks.

2. Optimal Bayesian smoother

Consider the following discrete-time nonlinear state-space
model as shown by

Process equation: X, = f(X;_1) + Vi_1 (1)
Measurement equation: z, = h(xy) + wy, (2)

where x;, € R" is a hidden or latent variable, called the ‘state’
of the system at time k;z, € R™ is the measurement at time
k; £(.) and h(.) are some known nonlinear functions, and v;_; and
Wy, are noise samples from two independent zero-mean Gaussian
processes with covariances Q,_1 and Ry, respectively. They account
for process model uncertainty and the inaccuracy of a measuring
device. Based on the state-space model, this section reviews how
fixed-interval smoothing is performed.

The optimal solution of fixed-interval smoothing can be
obtained in two different ways—two-filter smoothing (Fraser &
Potter, 1969) and forward-backward smoothing (Rauch, Tung, &
Striebel, 1965). For computational reasons, we will focus only on
forward-backward smoothing. Given measurements up to time
N(> k),Dy = {z1, z, ...2zy}, in forward-backward smoothing,
using Bayes’ rule the smoothed density p(X,|Dy) is factored as
follows:

P(Xk|Dn) :/ P(Xg, Xi-1|Dn ) dXpep 1
Rn

= / P (Xt 11DN )P (Xie[ X1, Dy ) dXpey 1. (3)
Rn

The Markovian nature of the state-space model implies that given
knowledge of Dy and x,.1, the state X is independent of future
measurements {Zy1, . . . zy}. That is, we may write

P(Xk[Xk+1, Dn) = p(Xk|Xg41, D). (4)
Substituting (4) into (3), we get the smoothed density

p(x¢/Dy) = / P(Xes1 1D )P e e 1, D)

— p(xlDy )/ P(Xper-11DN)P Kiey-1[X1e) X, (5)

P(Xiet-11D)

It is understood from (5) that the smoother has to perform two
different passes. In the forward filtering pass, it computes the
posterior density p(x¢|Di) and the predictive density p(X+1|Dx)
until the final time step; in the backward smoothing pass, it
recursively computes the smoothed density backward in time
starting fromk = N

For linear Gaussian systems in both the discrete and continuous
time domains, the solution to forward-backward smoothing can
be exactly found and is given by the Rauch-Tung-Striebel (RTS)
smoother (Rauch et al., 1965). For nonlinear systems, however,
the optimal smoothing solution is intractable for two reasons.
(i) For a multi-dimensional system, we must compute the multi-
dimensional integral (5). (i) Even after this integral is computed,
it may be difficult to propagate the smoothed density through
subsequent time steps because the new smoothed density is not
guaranteed to remain closed with a finite summary statistic. For
these reasons, we resort to approximations to obtain a suboptimal
smoother.

In the past, researchers have resorted to numerical methods to
obtain approximate smoothing solutions. One of the well known
approximate smoothers is the extended Kalman smoother, the
basic idea of which is to apply the Kalman (or RTS) smoother
theory by linearizing the nonlinear process and measurement
functions using the first-order Taylor series expansion evaluated
at the current estimate of the state (Bar Shalom, Li, & Kirubarajan,
2001). The RTS smoother theory can be well adopted to nonlinear
Gaussian filters. In Sirkkd and Hartikainen (2010) and Simandl
and Dunik (2009), derivative-free RTS smoothers based on the
unscented transformation, central differences (or the second
order Stirling’s interpolation) and Gauss-Hermite quadrature are
presented in a unified framework. The CKF, a relatively new
filter, yields reasonably accurate and numerically stable state
estimates at a minimal cost (Arasaratnam & Haykin, 2009). In the
subsequent sections, we derive the CKF-based square-root fixed-
interval smoother.

3. Cubature Kalman filtering

In this section, before proceeding to the development of the
Fixed-Interval Cubature Kalman Smoother (FI-CKS), we briefly
review the CKF first (Arasarathnam & Haykin, 2009). The CKF
is derived under the assumption that the predictive density
of the joint state-measurement random variable is Gaussian
(Arasaratnam & Haykin, 2009). This assumption naturally leads
to a Gaussian predictive and filtering density of the state. Under
this assumption, the Bayesian filter reduces to the problem
of how to compute integrals whose integrands are all of the
form nonlinear function x Gaussian. The CKF uses a third-
degree cubature rule to numerically compute the above Gaussian-
weighted integrals. For example, the cubature rule approximates
an n-dimensional Gaussian weighted integral as follows:

1 2n
/Rn FOON (X 12, D)dx ~ -~ ;f(u + VX&)

where a square-root factor of the covariance X satisfies the

relationship X = / X+/ ET and the set of 2n cubature points are
given by

=Y

with e; € R" denoting the i-th elementary column vector. That is,
the i-th entry of e; is unity and all other entries are zero. The third-
degree cubature rule is exact for Gaussian-weighted integrals
whose integrands are written in the form of a linear combination of
monomials up to the third degree or any odd-degree (Arasaratnam
& Haykin, 2009). Assuming at time k that the posterior density
p(XkID) = N Ry, Py) is known, we summarize the steps
involved in the time-update and the measurement-update of the
CKF as shown in Table 1 that was derived in Arasaratnam and
Haykin (2009).

i=1,2...n
i=n+1,n+2...2n
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