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This paper deals with issues related to the use of rational approximations in the simulation of fractional-
order systems and practical implementations of fractional-order dynamics and controllers. Based on
the mathematical formulation of the problem, a descriptor model is found to describe the rational
approximating model. This model is analyzed and compared with the original fractional-order system
under the aspects which are important in their simulation and implementation. From the results achieved,

one can determine in what applications the use of rational approximations would be unproblematic and
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in what applications it would lead to fallacious results. In order to clarify this point, some examples are
presented in which the effects of using rational approximations are investigated.
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1. Introduction

The analog realization of fractional-order systems plays an im-
portant role in practical applications of these systems in different
fields such as the synthesis of fractional-order controllers (Monje,
Vinagre, Feliu, & Chen, 2008; Podlubny, 1999a; Tavazoei, Haeri, Ja-
fari, Bolouki, & Siami, 2008) or the implementation of fractional-
order oscillators (Oustaloup, 1981; Radwan, El-Wakil, & Soliman,
2008; Radwan, Soliman, & EI-Wakil, 2008). One way for analogue
realization of fractional-order systems is to use special electrical
elements which are known as fractances. In fact, a fractance is an
electrical element with non-integer-order impedance (Le Mehaute
& Crepy, 1983). In some pioneering works, the fractance is con-
structed by designing an electrical circuit which consists of infi-
nite resistors and capacitors (Nakagawa & Sorimachi, 1992; Old-
ham & Zoski, 1983). In practice, the implementation of an electrical
circuit with an infinite number of elements is impossible. There-
fore, the designed circuits are truncated. Truncation of the circuit
in practical applications implies that an integer-order filter is used
instead of the real fractance. Another approach to design a frac-
tance is to use fractional capacitors. To fabricate a fractional capac-
itor, the use of some electrolyte processes or of other material with
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fractal structures has been proposed in the literature (Biswas, Sen,
& Dutta, 2006; Jesus & Machado, 2009), but it seems that the pro-
posed technologies take time to be developed and widely used in
practical applications. This means that the use of integer-order fil-
ters is still the primary way of analogue realization of a fractional-
order element (Petras, Podlubny, O’Leary, Dorcak, & Vinagre, 2002).
On the other hand, rational approximations of fractional operators
have been used in many papers to simulate a fractional-order sys-
tem. Since any approximation naturally has some limitations to de-
scribe its original counterpart, its usage should be performed with
some care and consideration. This paper deals with some clarifi-
cations about using such approximations in simulations or prac-
tical implementations of a fractional-order system. Based on the
outcome of the paper, one can recognize in what applications the
use of rational approximations would be allowable and in what
applications it would not be admissible. This paper is a sequel to
the previously published results in Tavazoei and Haeri (2007) and
Tavazoei, Haeri, Bolouki, and Siami (2008).

The paper is organized as follows. Section 2 briefly describes
the background of the problem. In Section 3, first the problem is
formulated and then a descriptor representation is found for the
approximated model. The rest of Section 3 is devoted to analyze
the model found. The results of Section 3 are further clarified by
presenting some examples in Section 4. Finally, the paper is con-
cluded in Section 5.

2. Preliminaries
By extending the concepts of the ordinary integral and deriva-

tive, fractional integral and derivative operators have been de-
fined in the literature. Different versions of these definitions


http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:tavazoei@sina.sharif.edu
mailto:haeri@sina.sharif.edu
http://dx.doi.org/10.1016/j.automatica.2009.09.016

M.S. Tavazoei, M. Haeri / Automatica 46 (2010) 94-100 95

can be found in Oldham and Spanier (1974), Samko, Kilbas, and
Marichev (1993), and Podlubny (1999b). Also, the geometric, phys-
ical and probabilistic interpretations of fractional-order integra-
tion and differentiation have been presented in Podlubny (2002)
and Machado (2003). Fractional-order systems as a generalization
of traditional integer-order systems can be described by differ-
ential equations containing fractional derivatives. For example, a
fractional-order linear time-invariant system can be defined in the
following state space like form:

d*tx /dt™ ayp 4z - 4\ /X
a o
d“x, /dt*? Gy1 Gy -+ Oy X2
) =\ . . ) 1 (1)
danxn/dta” Qn1 Qn2 s Opp Xn

where 0 < o; < 1and d*/dt® refers to smooth fractional deriva-
tion (Matignon, 1996). As a more general form of (1), a fractional-
order non-linear time-invariant system may be defined as follows:

d%x;/dt* = fi(x1, X2, ..., Xy), i=1,2,...,n. (2)

Two prevalent approaches to determine the responses of fractional-
order systems (1) and (2) are to solve the fractional-order dif-
ferential equations involved numerically and to approximate the
fractional-order system using fractional operator approximations.
The results obtained from the first approach are more reliable than
the results given by the second approach; however, due to the long
memory characteristics of fractional-order systems, the use of the
methods in the first category requires fairly long simulation times
(Tavazoei & Haeri, 2007). This drawback is probably the main rea-
son why the second approach has been used in the literature (Aoun,
Malti, Levron, & Oustaloup, 2004; Hartley, Lorenzo, & Qammer,
1995). To find a rational approximation of a fractional-order op-
erator, many methods such as Matsuda’s method (Matsuda & Fujii,
1993), Oustaloup’s method (Oustaloup, Levron, Mathieu, & Nanot,
2000), and Charef's method (Charef, 2006) have been proposed. To
simulate a fractional-order system defined by (1) or (2) using ra-
tional approximations, first the fractional-order equations of the
system are transformed to the frequency domain representation
and then the Laplace transforms of the fractional integral operators
are replaced by their rational approximations. The approximated
equations in the frequency domain are then transformed back into
the time domain. The resulting ordinary differential equations can
be solved numerically by applying well-known numerical methods
such as Euler or Runge-Kutta methods.

On the other hand, the fractional-order system (1) can be im-
plemented by a network of resistance and fractional capacitors.
As mentioned in the previous section, in practice the non-integer-
order impedances of fractional capacitors are usually replaced by
some filters that approximate the desired impedance. By using
these filters, the fractional-order system (1) is approximately im-
plemented.

The problem of simulating or implementing a fractional-order
system using rational approximations is formulated in the next
section. In addition, the approximated model is determined and
analyzed.

3. Analysis of the approximated model

Suppose that the rational approximations of the fractional

operators 1/s% fori = 1,2, ..., n are described by the following
proper transfer functions:
1 Qi(s)
— X Gi(s) =
s Pi(s)
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where at least one of the p,, ; coefficients fori = 1, 2, ..., nisnon-
zero. In other words, m is the maximum order of the approximating
filters. Without loss of generality, in this paper it is assumed that
deg(Pa(s)) =< deg(Pp_1(s)) =< < deg(Pi(s)) = m. The
approximated model is studied in the two subsequent sections
for fractional-order linear and non-linear time-invariant systems,
respectively.

3.1. Approximated model for linear system (1)

For the given system (1) and with the approximating filters
defined in (3), the approximated model can be described by the
following differential equations:

m m n (T)
Zpr,ix,‘(r) = Z (Qr,i (Z aikxk>> , i=1,2,...,n. (4)
r=0 k=1

r=0

This model can also be described by a higher-order descriptor
realization given as

AnX™ + A x™D 4 b A+ Agx = 0, (5)
where

A; = diag(pi1, Pi2» - - -» Pin) — diag(qi1, G2, - - -, Gi,n)A.

The original system (1) has only one fixed point placed at the
origin provided that the matrix A = [a;j]nxn is non-singular. The
approximated model also has a single fixed point at the origin
when the matrix Ag is non-singular.

The higher-order descriptor model (5) can be converted to the
following first-order descriptor model: (Duan, 2006)

Ez = Mz, (6)
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The descriptor model (6) is said to be regular if A(s) = det(sE —M)
is not identically zero. The regularity of model (6) guarantees the
existence and uniqueness of the solution z(t) for a given initial con-
dition Ez(0) (Campbell, 1980). It is well known that the response of
adescriptor linear system such as (6) may contain impulsive terms.
The solution will be impulsive-free if deg(det(sE — M)) = rank(E)
(Dai, 1989). Therefore, the approximated model will be impulsive-
free if

deg(det(sE — M)) = n(m — 1) 4 rank(Ay). (7)

The zeros of A(s) = det(sE — M) are finite poles of system (6). It is
clear that, if matrix E is non-singular, the poles of system (6) will be
eigenvalues of matrix E~'M. System (6) is asymptotically stable if
all finite poles, i.e. finite eigenvalues of the pencil sSE — M, have real
parts less than zero (Dai, 1989). The finite poles of system (6) spec-
ify the exponential modes of this system. Hence, the solution of the
approximated model can at most have n(m — 1) + rank(A,,) expo-
nential modes. Based on the Weierstrass-Kronecker theorem (Dai,
1989), there exist mn x mn non-singular matrices P and Q such that

P(sE — M)Q = (S’do_] 0 ) , (8)
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