
Accident Analysis and Prevention 45 (2012) 152– 163

Contents lists available at SciVerse ScienceDirect

Accident  Analysis  and  Prevention

j ourna l ho me pa ge: www.elsev ier .com/ locate /aap

Measuring  safety  treatment  effects  using  full  Bayes  non-linear  safety
performance  intervention  functions

Karim  El-Basyounya,1, Tarek  Sayedb,∗

a Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
b Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada V6T 1Z4

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 18 February 2011
Received in revised form 2 September 2011
Accepted 25 November 2011

Keywords:
Autoregressive models
Distributed lag models
Empirical Bayes
Full Bayes estimation
Intervention models
Markov Chain Monte Carlo
Negative binomial regression
Novelty effects
Observational before–after studies
Poisson lognormal regression
Treatment effects

a  b  s  t  r  a  c  t

Full  Bayes  linear  intervention  models  have been  recently  proposed  to conduct  before–after  safety  stud-
ies. These  models  assume  linear  slopes  to represent  the  time  and  treatment  effects  across  the treated
and  comparison  sites.  However,  the  linear  slope  assumption  can  only  furnish  some  restricted  treatment
profiles.  To  overcome  this  problem,  a first-order  autoregressive  (AR1)  safety  performance  function  (SPF)
that has  a dynamic  regression  equation  (known  as the  Koyck  model)  is  proposed.  The  non-linear  ‘Koyck’
model  is  compared  to  the  linear  intervention  model  in  terms  of  inference,  goodness-of-fit,  and  appli-
cation.  Both  models  were  used  in  association  with  the Poisson-lognormal  (PLN)  hierarchy  to evaluate
the  safety  performance  of  a sample  of  intersections  that  have  been  improved  in the  Greater  Vancouver
area.  The  two  models  were  extended  by  incorporating  random  parameters  to account  for  the correlation
between  sites  within  comparison–treatment  pairs.  Another  objective  of  the  paper  is to  compute  basic
components  related  to the  novelty  effects,  direct  treatment  effects,  and  indirect  treatment  effects  and  to
provide  simple  expressions  for the  computation  of  these  components  in  terms  of  the model  param-
eters.  The  Koyck  model  is  shown  to furnish  a wider  variety  of  treatment  profiles  than  those  of  the
linear  intervention  model.  The  analysis  revealed  that incorporating  random  parameters  among  matched
comparison–treatment  pairs  in the  specification  of  SPFs  can  significantly  improve  the  fit,  while  reducing
the  estimates  of  the extra-Poisson  variation.  Also,  the  proposed  PLN  Koyck  model  fitted  the data  much
better  than  the  Poisson-lognormal  linear  intervention  (PLNI)  model.  The  novelty  effects  were  short  lived,
the indirect  (through  traffic  volumes)  treatment  effects  were  approximately  within  ±10%,  whereas  the
direct treatment  effects  indicated  a  non-significant  6.5%  reduction  during  the  after  period  under  PLNI
compared  to  a significant  12.3%  reduction  in predicted  collision  counts  under  the  PLN  Koyck  model.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The Empirical Bayes (EB) methodology has been the state-
of-the-art for determining the effectiveness of safety treatments.
The EB approach was shown to account for confounding fac-
tors such as the regression-to-the-mean (RTM) in observational
before–after studies (Hauer, 1997; Hauer et al., 2002; Sayed et al.,
2004; Persaud and Lyon, 2007). Alternatively, recent advances in
statistical modeling techniques have facilitated the application of
the full Bayes approach to conduct safety analysis. (Aul and Davis,
2006; Pawlovich et al., 2006; Li et al., 2008; Lan et al., 2009; Persaud
et al., 2009; El-Basyouny and Sayed, 2010, 2011; Park et al., 2010;
Yanmaz-Tuzel and Ozbay, 2010).
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The results of several studies suggest that the FB approach is
appealing due to its ability to: account for all uncertainty in the data,
provide more detailed inference, allow inference at more than one
level for hierarchical models, and efficiently integrating the esti-
mation of the SPF and treatment effects in a single step, whereas
these are separate tasks in the Empirical Bayes method (Huang
et al., 2009; Lan et al., 2009; Persaud et al., 2009; El-Basyouny and
Sayed, 2010). Additionally, the FB approach provides more flexi-
bility in developing SPFs such as the use of intervention models
in a before–after road safety evaluation (Pawlovich et al., 2006;
Li et al., 2008), the application of the multivariate PLN to model
collision counts at different levels of severity (Park et al., 2010;
El-Basyouny and Sayed, 2011) and the use of random parameters
to gain new insights into how collision counts are influenced by
covariates and to account for heterogeneity due to unobserved road
geometrics, traffic characteristics, environmental factors and driver
behavior (Anastasopoulos and Mannering, 2009; El-Basyouny and
Sayed, 2009).

Given these advantages, several studies have proposed using
the FB approach to conduct observational before–after studies.

0001-4575/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aap.2011.11.018

dx.doi.org/10.1016/j.aap.2011.11.018
http://www.sciencedirect.com/science/journal/00014575
http://www.elsevier.com/locate/aap
mailto:karim.el-basyouny@ualberta.ca
mailto:tsayed@civil.ubc.ca
dx.doi.org/10.1016/j.aap.2011.11.018


K. El-Basyouny, T. Sayed / Accident Analysis and Prevention 45 (2012) 152– 163 153

For example, Li et al. (2008) considered various linear forms of
intervention and hierarchical models (Poisson-Gamma or Poisson-
lognormal) to conduct safety evaluations. These linear intervention
models acknowledge that treatment (intervention) effects do not
occur instantaneously but are spread over future time periods, and
use dynamic regression models to identify the lagged effects of the
intervention to describe their response. The forms/models were
developed to deal with both immediate and gradual treatment
impacts while accounting for countermeasure implementation,
time effects, traffic volumes as well as the effects of other covariates
representing various site characteristics. Park et al. (2010) extended
the univariate linear intervention model to include multivariate
dependent variables with multiple regression links and proposed
an algorithm for the computation of the treatment effectiveness
index to determine the efficacy of the countermeasure. To gain
new insights into how collision counts are influenced by covari-
ates and to account for heterogeneity, the use of multivariate linear
intervention models with random parameters among matched
treatment–comparison pairs was advocated by El-Basyouny and
Sayed (2011).

It  should be noted that in all of the above studies, linear slopes
were assumed to represent the time and treatment effects across
the treated and comparison sites. To overcome the linear slopes
assumption, this paper advocates the use of the nonlinear ‘Koyck’
intervention model (Koyck, 1954) to represent the lagged treat-
ment effects that are distributed over time. The Koyck model is an
alternative dynamic regression form involving a first-order autore-
gressive (AR1) SPF that is based on distributed lags (Judge et al.,
1988; Pankratz, 1991). The Koyck model affords a rich family of
forms (over the parameter space) that can accommodate various
profiles for the treatment effects. Therefore, the first objective of
the paper is to present the Koyck model as an alternative non-
linear intervention model to estimate the effectiveness of safety
treatments in before–after designs.

Besides, it is possible using the Koyck model to isolate
an additional component corresponding to the time (novelty)
effects. Analyzing such a phenomenon provides valuable insight
into whether the overall gain in safety compensates for the
short-term confusion caused by the introduction of the new
safety countermeasure (Persaud, 1986). Although the assess-
ment of the uncertain duration or stability over time of the
effects of road safety measures is important, novelty effects have
received little attention in the road safety literature (Elvik, 2010).
Therefore, another objective of the paper is to formulate and
estimate novelty effects under the Koyck nonlinear intervention
model.

In addition, the paper offers a novel approach to compute the
various components of the treatment effectiveness index under
both the linear and the nonlinear intervention models. The various
components are related to direct and indirect treatment effects. The
direct effects are further decomposed into long term trend changes
and overall mean level changes whereas the indirect effects are
imposed on the predicted collisions through traffic volumes and
other site characteristics that vary with time. The importance
of isolating a component corresponding to the direct treatment
effects cannot be over emphasized as it enables analysts to assess
the effectiveness of the countermeasures apart from local (site-
related) environmental factors. These specific aspects of treatment
effectiveness are important for traffic safety applications and help
overcome the imperfection of the rather “blind” treatment effec-
tiveness index.

Finally, the paper aims to provide straightforward equations in
terms of model parameters for the computation of the treatment
effectiveness index and its above-mentioned components without
resorting to additional algorithms such as the one proposed by Park
et al. (2010).

To  demonstrate the differences between the linear intervention
model and the nonlinear ‘Koyck’ intervention model, the full Bayes
approach is utilized to determine the effectiveness of certain coun-
termeasures that were implemented in 25 treated intersections in
the Greater Vancouver area using an observational before–after
design involving comparison groups. The linear and nonlinear
‘Koyck’ intervention models have been extended by including ran-
dom parameters to account for the correlation between sites within
comparison–treatment pairs. Treatment effectiveness was inves-
tigated under both models and the respective components were
estimated and compared.

2. The models

Let Yit denote the collision count observed at site i (i = 1, 2, . . .,
n) during year t (t = 1, 2, . . .,  m). It is assumed that the data are
available for a reasonable period of time before the intervention
(at least two years). Naturally, longer periods are preferable both
before and after the intervention.

2.1. The Poisson-lognormal linear intervention (PLNI) model

For the PLNI model (M1), it is assumed that the Yit are indepen-
dently distributed as

Yit |�it∼Poisson(�it), (1)

ln(�it) = ln(�it) + εi, (2)

ln(�it) = ˛0 + ˛1Ti + ˛2t + ˛3(t − t0i)Iit + ˛4Tit + ˛5Ti(t − t0i)Iit

+ ˛6TiIit + ˇ1 ln(V1it) + ˇ2 ln(V2it) + ˇ3X3i + · · · + ˇJXJi, (3)

εi∼N(0, �2
ε ), (4)

where Ti is a treatment indicator (equals 1 for treated sites, zero for
comparison sites), t0i is the intervention year for the ith treated site
and its matching comparison group, Iit is a time indicator (equals 1
in the after period, zero in the before period), V1it and V2it denote
the annual average daily traffic (AADT) at the major and minor
approaches, respectively, (X3i, . . .,  XJi) are additional covariates rep-
resenting geometric and environmental site characteristics, (˛0,
. . .,  ˇJ) are the regression coefficients and �2

ε represents the extra-
Poisson variation.

The interpretation of the regression coefficients is given by Li
et al. (2008) and El-Basyouny and Sayed (2011).  In particular, the
parameters ˛4 and ˛5 allow for different time trends and differ-
ent intervention slopes across the treated and comparison sites,
whereas ˛6 represents a possible sudden drop (or increase) in col-
lision counts immediately following the intervention. If the changes
at the treatment sites were gradual (without a sudden jump), the
parameter ˛6 is dropped from the model (˛6 = 0).

Since the matched comparison sites were selected to be as sim-
ilar to treatment sites as possible, this may  induce a correlation in
collision count between sites within comparison–treatment pairs.
To account for this correlation, suppose that the ith site belongs to
the pair p(i) ∈ {1, 2, . . .,  NC}, where NC denotes the number of com-
parison groups. The variation due to the comparison–treatment
pairing can be represented by allowing the regression coefficients
in Eq. (3) to vary randomly from one pair to another. This leads to
the model M2

ln(�it) = ˛p(i),0 + ˛p(i),1Ti + ˛p(i),2t + ˛p(i),3(t − t0i)Iit + ˛p(i),4Tit

+ ˛p(i),5Ti(t − t0i)Iit + ˛p(i),6TiIit + ˇp(i),1 ln(V1it)

+ ˇp(i),2 ln(V2it) + ˇp(i),3X3i + · · · + ˇp(i),JXji, (5)
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