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a b s t r a c t

We develop sampled-data controllers for parabolic systems governed by uncertain semilinear diffusion
equations with distributed control on a finite interval. Such systems are stabilizable by linear infinite-
dimensional state-feedback controllers. For a realistic design, finite-dimensional realizations can be
applied leading to local stability results. Here we suggest a sampled-data controller design, where
the sampled-data (in time) measurements of the state are taken in a finite number of fixed sampling
points in the spatial domain. It is assumed that the sampling intervals in time and in space are
bounded. Our sampled-data static output feedback enters the equation through a finite number of shape
functions (which are localized in the space) multiplied by the corresponding state measurements. It
is piecewise-constant in time and it may possess an additional time-delay. The suggested controller
can be implemented by a finite number of stationary sensors (providing discrete state measurements)
and actuators and by zero-order hold devices. A direct Lyapunov method for the stability analysis of
the resulting closed-loop system is developed, which is based on the application of Wirtinger’s and
Halanay’s inequalities. Sufficient conditions for the exponential stabilization are derived in terms of Linear
Matrix Inequalities (LMIs). By solving these LMIs, upper bounds on the sampling intervals that preserve
the exponential stability and on the resulting decay rate can be found. The dual problem of observer
design under sampled-data measurements is formulated, where the same LMIs can be used to verify the
exponential stability of the error dynamics.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

We develop sampled-data controllers for parabolic systems
governed by semilinear diffusion equations with distributed con-
trol. Such systems are stabilizable by linear infinite-dimensional
state-feedback controllers. For a realistic design, finite-dimensional
realizations (Balas, 1985; Candogan, Ozbay, & Ozaktas, 2008;
Smagina & Sheintuch, 2006) can be applied. However, finite-
dimensional control, which employs e.g. Galerkin truncation, leads
to local stability results (Smagina & Sheintuch, 2006). In Hagen
and Mezic (2003) the control input has been designed to enter
the semilinear diffusion equation through a finite number of shape
functions (e.g. step functions) and their respective amplitude val-
ues. Sufficient conditions have been derived for the global stabi-
lization of the infinite-dimensional dynamics. For linear parabolic
systems mobile collocated sensors and actuators (see Demetriou
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(2010) and references therein) or adaptive controllers (Krstic &
Smyshlyaev, 2008; Smyshlyaev & Krstic, 2005) can be used. The
latter methods are not easy to implement.

Sampled-data control of finite-dimensional systems have been
studied extensively over the past decades (see e.g. Chen and
Francis (1995), Naghshtabrizi, Hespanha, and Teel (2008), Fujioka
(2009), Fridman (2010) and the references therein). Three main
approaches have been used to control of sampled-data systems:
the discrete-time, the time-delay and the impulsive system
approaches. Unlike the other approaches, the discrete-time one
does not take into account the inter-sampling behavior and seems
not to be applicable to time-varying or nonlinear systems.

There are only a few references on sampled-data control of
distributed parameter systems (Cheng, Radisavljevic, Chang, Lin, &
Su, 2009; Logemann, Rebarber, & Townley, 2003, 2005). All these
works use the discrete-time approach for linear time-invariant
systems. Observability of parabolic systems under sampled-data
measurements has been studied in Khapalov (1993). Recently
a model-reduction-based approach to sampled-data control was
introduced in Ghantasala and El-Farra (2010), Sun, Ghantasala,
and El-Farra (2009), where a finite-dimensional controller was
designed on the basis of a finite-dimensional system that captures
the dominant (slow) dynamics of the infinite-dimensional system.
The latter approach seems to be not applicable to systems
with spatially-dependent diffusion coefficients andwith uncertain
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nonlinear terms. The existing sampled-data results are not
applicable to the performance analysis of the closed-loop system,
e.g. to the decay rate of the exponential convergence.

We suggest a sampled-data controller design for a one-
dimensional semilinear diffusion equation, where the sampled-
data in timemeasurements of the state are taken in a finite number
of fixed sampling spatial points. It is assumed that the sampling
intervals in time and in space may be variable, but bounded.
The sampling instants (in time) may be uncertain. The diffusion
coefficient and the nonlinearity may be unknown, but they satisfy
some bounds. The sampled-data static output feedback controller
is piecewise-constant in time. It can be implemented by a finite
number of stationary sensors and actuators and by zero-order
hold devices. Sufficient conditions for exponential stabilization are
derived in terms of LMIs in the framework of time-delay approach
to sampled-data systems. By solving these LMIs, upper bounds on
the sampling intervals that preserve the stability and on the resulting
decay rate can be found. Finally, the dual problem of observer
design under sampled-data measurements is discussed.

We note that the LMI approach has been introduced in Frid-
man and Orlov (2009a), Fridman and Orlov (2009b) for some
classes of distributed parameter systems, leading to simple finite-
dimensional sufficient conditions for stability. The method in
the present paper is based on the novel combination of Lya-
punov–Krasovskii functionals with Wirtinger’s and Halanay’s in-
equalities. A numerical example illustrates the efficiency of the
method. Some preliminary results will be presented in Fridman
and Blighovsky (2011).
Notation. Throughout the paper Rn denotes the n dimensional
Euclidean space with the norm | · |, Rn×m is the set of all n × m
real matrices, and the notation P > 0 with P ∈ Rn×n means that
P is symmetric and positive definite. The symmetric elements of
the symmetric matrix will be denoted by ∗. Functions, continuous
(continuously differentiable) in all arguments, are referred to as
of class C (of class C1). L2(0, l) is the Hilbert space of square
integrable functions z(ξ), ξ ∈ [0, l] with the corresponding norm

∥z∥L2 =

 l
0 z

2(ξ)dξ . H1(0, l) is the Sobolev space of absolutely

continuous scalar functions z : [0, l] → R with dz
dξ ∈ L2(0, l).

H2(0, l) is the Sobolev space of scalar functions z : [0, l] → R
with absolutely continuous dz

dξ and with d2z
dξ2

∈ L2(0, l).

2. Problem formulation and useful inequalities

Consider the following semilinear scalar diffusion equation

zt(x, t) =
∂

∂x
[a(x)zx(x, t)] + φ(z(x, t), x, t)z(x, t)

+ u(x, t), t ≥ t0, x ∈ [0, l], l > 0, (1)

with Dirichlet boundary conditions

z(0, t) = z(l, t) = 0, (2)

or with mixed boundary conditions

zx(0, t) = γ z(0, t), z(l, t) = 0, γ ≥ 0, (3)

where subindexes denote the corresponding partial derivatives
and γ may be unknown. In (1) u(x, t) is the control input. The
functions a and φ are of class C1 and may be unknown. These
functions satisfy the inequalities a ≥ a0 > 0, φm ≤ φ ≤ φM ,
where a0, φm and φM are known bounds.

It is well-known that the open-loop system (1) under the
above boundary conditions may become unstable if φM is big
enough (see Curtain and Zwart (1995) for φ ≡ φM ). Moreover,
a linear infinite-dimensional state feedback u(x, t) = −Kz(x, t)
with big enough K > 0 exponentially stabilizes the system (see

Proposition 1). In the present paper we develop a sampled-data
controller design.

Consider (1) under the boundary conditions (2) or (3). Let the
points 0 = x0 < x1 < · · · < xN = l divide [0, l] into N
sampling intervals. We assume that N sensors are placed in the
middle x̄j =

xj+1+xj
2 (j = 0, . . . ,N − 1) of these intervals. Let

t0 < t1 < · · · < tk . . . with limk→∞ tk = ∞ be sampling
time instants. The sampling intervals in time and in space may be
variable but bounded

0 ≤ tk+1 − tk ≤ h, xj+1 − xj ≤ ∆. (4)

Sensors provide discrete measurements of the state:

yjk = z(x̄j, tk), x̄j =
xj+1 + xj

2
,

j = 0, . . . ,N − 1, t ∈ [tk, tk+1), k = 0, 1, 2 . . .

(5)

Our objective is to design for (1) an exponentially stabilizing
(sampled-data in space and in time) controller

u(x, t) = −Kz(x̄j, tk), x̄j =
xj+1 + xj

2
,

x ∈ [xj, xj+1), j = 0, . . . ,N − 1,
t ∈ [tk, tk+1), k = 0, 1, 2 . . .

(6)

with the gain K > 0. The closed-loop system (1), (6) has the form:

zt(x, t) =
∂

∂x
[a(x)zx(x, t)] + φ(z(x, t), x, t)z(x, t)

− Kz(x̄j, tk), t ∈ [tk, tk+1), k = 0, 1, 2 . . .

xj ≤ x < xj+1, j = 0, . . . ,N − 1. (7)

By using the relation z(x̄j, tk) = z(x, tk)−
 x
x̄j
zζ (ζ , tk)dζ , (7) can be

represented as

zt(x, t) =
∂

∂x
[a(x)zx(x, t)] + φ(z(x, t), x, t)z(x, t)

− K [z(x, tk) −

 x

x̄j
zζ (ζ , tk)dζ ],

xj ≤ x < xj+1, j = 0, . . . ,N − 1,

t ∈ [tk, tk+1), k = 0, 1, 2 . . . (8)

We will start with the sampled-data in space and continuous in
time controller

u(x, t) = −Kz(x̄j, t), xj ≤ x < xj+1, j = 0, . . . ,N − 1. (9)

Also a more general controller of the form

u(x, t) = −Kz(x̄j, tk − ηk), t ∈ [tk, tk+1), k = 0, 1, 2 . . . ,

xj ≤ x < xj+1, j = 0, . . . ,N − 1, u(x, t) = 0, t < t0, (10)

where ηk ∈ [0, ηM ] is an additional (control or measurement)
delay, will be studied. Such a controller models e.g. network-based
stabilization, where variable and uncertain sampling instants tk
may appear due to data packet dropouts, whereas ηk is network-
induced delay (Gao, Chen, & Lam, 2008; Zhang, Branicky, & Phillips,
2001). Representing tk−ηk = t−τ(t), where τ(t) = t−tk+ηk, we
have τ(t) ∈ [0, τM ] with τM = h + ηM . Finally, the dual problem
of the observer design for semilinear diffusion equations under the
sampled-data measurements is considered.

Remark 1. Our results will be applicable to convection–diffusion
equation

zt(x, t) = a0zxx(x, t) − βzx(x, t) + φ(z(x, t), x, t)z(x, t)

+ u(x, t), t ≥ t0, x ∈ [0, l], l > 0, (11)
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