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a b s t r a c t

In this paper, the distributed containment control is considered for a second-order multi-agent system
guided by multiple leaders with random switching topologies. The multi-leader control problem is
investigated via a combination of convex analysis and stochastic process. The interaction topology
between agents is described by a continuous-time irreducible Markov chain. A necessary and sufficient
condition is obtained to make all the mobile agents almost surely asymptotically converge to the static
convex leader set. Moreover, conditions on the tracking estimation are provided for the convex target set
determined by moving multiple leaders.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Recent years have witnessed a huge and rapidly growing
literature concerned with multi-agent problems due to the
broad applications in various disciplines. The leader–follower
coordination, as one of the important problems of multi-agent
networks, has been studied in the last decade, with significant
results obtained for first-order or second-order multi-agent
systems. Static-leader cases were studied with jointly-connected
interaction topologies in Jadbabaie, Lin, and Morse (2003).
Moreover, potential function approaches were used to drive the
agents to follow a desired trajectory in Olfati-Saber (2006) and
similar results under relaxed assumptions were obtained in Ren
and Beard (2008) and Su,Wang, and Lin (2009). To follow amoving
leader with unmeasurable velocity, distributed observers were
designed for second-order multi-agent systems in Hong, Chen,
and Bushnell (2008). Also, an estimator-based tracking problem
was investigated for a leader–follower system with measurement
noises in Hu and Feng (2010).
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Due to the practical demand, multi-agent coordination with
multiple leaders becomesmore andmore important sincemultiple
leaders may be useful to achieve effectively the containment or
guidance of an agent group in a target region (see Couzin, Krause,
Franks, and Levin (2005)). Target aggregation or containment with
multiple leaders was developed, aiming at containing a group of
agents in a specific target region. Containment control schemes
were proposed to make the agents stay in the convex set spanned
by the multiple leaders in Ji, Ferrari-Trecate, Egerstedt, and Buffa
(2008). The target containment of nonlinear multi-agent systems
with different switching topologies was considered to contain a
group of agents guided by leaders in a given target set in Shi
and Hong (2009). Also, a distributed control method was reported
for multi-agent containment in Cao and Ren (2010). Additionally,
the attitude containment control was studied in Dimarogonas,
Tsiotras, and Kyriakopoulos (2009), while finite-time control law
was designed for containment in Meng, Ren, and You (2010).

Random switching topologies were also investigated for multi-
agent coordination algorithms due to many practical backgrounds
including gossip algorithms and communication patterns (for
example, Boyd, Ghosh, Prabhakar, and Shah (2006) and Matei,
Martins, and Baras (2009)). In fact, during the information
transmission, packet drop and node failure phenomena can be
described as random switching graph processes, and multi-
agent consensus with various random graph processes was also
important. To solve the related coordination problems, different
approaches were proposed. For example, the asymptotic almost
sure consensus is achieved over random information networks in
Porfiri and Stilwell (2007), where the existence of any edge in
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a topology is probabilistic and independent from the existence
of any other edge. Moreover, similar results were obtained for
stationary and ergodic graph processes in Tahbaz-Salehi and
Jadbabaie (2010), while the mean square consensus problem was
discussed for a second-order discrete-time systemwithMarkovian
graphs in Zhang and Tian (2009). Additionally, Liu, Lu, and Chen
(2011) also investigated consensus problem based on adapted
stochastic processes.

To our knowledge, there is no theoretical result on containment
of second-order multi-agent systems with random switching
interconnections. The objective of the paper is to study the
containment control for a second-order multi-agent system with
a target set specified by multiple leaders. Here, we develop a new
method to solve the problemwith the help of both convex analysis
and stochastic process analysis, because the existing methods on
random consensus used in Porfiri and Stilwell (2007), Tahbaz-
Salehi and Jadbabaie (2010) and Zhang and Tian (2009), or the
containment methods for deterministic systems proposed in Cao
and Ren (2010) and Ji et al. (2008), cannot be applied to solve
our problem; we solve the containment of the second-order agent
systems with switching topologies, which is more complicated
than the first-order agent model with deterministic switching
studied in Shi and Hong (2009). Additionally, we investigate set
containment for continuous-time systems, different from many
existing random consensus results for discrete-time systems.

Notation. In is the n × n identity matrix; For a given vector x, xT
stands for its transpose, ∥x∥2 for its Euclidean norm; For a given
matrix F , ∥F∥∞ stands for its infinite norm, exp(F) for its matrix
exponential, (F)ij for its i-th row and j-th column entry; (W )∗∗

denotes the 2n × 2n left upper block of matrix W ∈ R(2n+l)×(2n+l);
⊗ denotes Kronecker product.

2. Preliminaries and formulation

In this section, we introduce preliminary knowledge about
graph theory and stochastic process, and then our problem
formulation.

It is known that the interaction topology of a multi-agent
system consisting of n agents (followers) and l leaders can be
described by a digraph G = (V, E) with the set of nodes V =

I


L and the set of arcs E ⊆ V×V .Without loss of generality, we
assume the first n agents as the followers and the last l agents as the
leaders. Let I = {1, . . . , n} and L = {n+ 1, . . . , n+ l} denote the
index sets of followers and leaders, respectively. (i, j) ∈ E means
that there is an arc from node i to node j (or equivalently, node j
is a neighbor of node i). The adjacency matrix associated with the
graph is denoted as A = [aij](n+l)×(n+l) with nonnegative adjacency
elements aij. The element aij of matrix A associated with arc (i, j) is
positive, i.e., aij > 0 if and only if (i, j) ∈ E . There is no self-loop in
G, i.e., aii = 0 for all i ∈ V . In our problem, aij = 0 for all i ∈ L and
j ∈ V . A path from i to j in G is a sequence i0, i1, . . . , iι of distinct
nodes such that (ik−1, ik) ∈ E for k = 1, . . . , ι, where i0 = i, iι = j.
Node j is reachable from node i if there is at least one path from i to
j. Leader set L is reachable from node i if there exists at least one
leader j ∈ L such that j is reachable from i. Moreover, L is globally
reachable in G if it is reachable from every node of I.

Given digraph G, E(G) and A(G) denote the set of arcs and the
adjacency matrix of G, respectively. The set of neighbors of node
i in I and L are denoted by Nif (G) = {j|(i, j) ∈ E(G), j ∈ I},
Nil(G) = {j|(i, j) ∈ E(G), j ∈ L}, respectively.


1≤r≤p Gr denotes

the union graph with nodes set V and arcs set


1≤r≤p E(Gr). Let
Gf be the induced subgraph of G with all followers as nodes. The
degree matrix of Gf is a diagonal matrix Df

= diag{df1, . . . , d
f
n}

with dfi =


1≤j≤n aij(1 ≤ i ≤ n) and the Laplacian matrix of Gf

is defined as Lf = Df
− Af , where Af is the adjacency matrix of Gf

(referring to Godsil and Royle (2001) for details). Moreover, Afl and
Dfl denote the adjacency and degreematrix between followers and
leaders, respectively, i.e., (Afl)ir = ai(n+r),Dfl

= diag{dfl1, . . . , d
fl
n},

where dfli =


1≤r≤l ai(n+r)(1 ≤ i ≤ n).
To dealwith random switching ofmulti-agent systems,we have

to consider stochastic processes (referring to Chow and Teicher
(1997), Norris (1997) and Ross (1983)). Given a probability space
(Ξ , F , P). The elements ofΞ are called sample events. ForQ ∈ F ,
the indicator function χQ : Ξ → R is defined by χQ (w) = 1 if
w ∈ Q , and χQ (w) = 0 otherwise. Ex denotes the expectation of
random variable x. Let {ϕk, k = 0, 1, . . .} be an ergodic stationary
sequence, and g an infinite dimensional Borelmeasurable function.
Then {ξk, k = 0, 1, . . .} is also an ergodic stationary sequence if
E|ξ0| < +∞, where ξk = g(ϕk, ϕk+1, . . .). According to the strong
law of large numbers of ergodic stationary sequence,

lim
k→∞

(ξ0 + ξ1 + · · · + ξk)/(k + 1) = Eξ0 a.s.

Let {σ(t), t ≥ 0} be a homogeneous irreducible continuous-
time Markov chain taking values in a finite set S = {1, . . . , s∗} of
positive recurrent states. Define random variable sequence t0 = 0,

tk+1 = min{t|t > tk, σ (t) ≠ σ(tk)}, k = 0, 1, . . . . (1)

Then {tk+1 − tk, k = 0, 1, . . .} are independent, conditional on
{σ(tk), k = 0, 1, . . .} and, for each r ∈ S, there is a scalar 0 <
ρr < ∞

2 such that tk+1 − tk has the exponential distribution
with parameter ρr , conditional on σ(tk) = r. In addition, tk →

∞ as k → ∞ with probability one. The embedded Markov
chain is defined as {σ(tk), k = 0, 1, . . .}, which is homogeneous,
irreducible and takes values in S. Let ϖ = (ϖij) ∈ Rs∗×s∗ be
its transition probability matrix. According to (1), ϖii = 0 for all
i ∈ S. Moreover, let π = (π1, . . . , πs∗) be its unique stationary
distribution, i.e., P(σ (tk) = r) = P(σ (0) = r) = πr for
any k, where πr > 0 for all 1 ≤ r ≤ s∗. Here P = Pπ

is the probability measure generated by the unique stationary
distribution and transition probability matrix ϖ , and then under
P the embedded Markov chain {σ(tk), k = 0, 1, . . .} is an ergodic
stationary sequence. E = Eπ is the expectation corresponding to
P. In fact, the obtained conclusions also hold for P = Pπ̄ , where π̄
is any given initial distribution.

Discrete-time Markovian random graphs were discussed in
Matei et al. (2009), and here we give a corresponding concept for
continuous-time cases.

Definition 1. Let P = {Gr , r = 1, . . . , s∗} be a set of digraphs
with n followers and l leaders. By a continuous-time Markovian
random graph process we understand a map G : S → P such
that G(σ (t)) = Gσ(t) for any t ≥ 0, where {σ(t), t ≥ 0} is
a continuous-time homogeneous irreducible Markov chain taking
values in a finite set S = {1, . . . , s∗} of positive recurrent states.

In our multi-agent problem, the dynamic of leader i (i = n +

1, . . . , n + l) is expressed as:

ḣi = fi(h, t), h = (hT
n+1, . . . , h

T
n+l)

T (2)

where hi ∈ Rm is the position of leader i, and fi(h, t) : Rlm
×R → Rm

is its velocity, piecewise continuous in (h, t). The dynamic of agent
i (i = 1, . . . , n) is described by:

ẋi = vi, v̇i = ui (3)

2 The irreducibility ofMarkov chain implies that ρr > 0 for all 1 ≤ r ≤ s∗ . A state
r for which ρr = ∞means that it is instantaneously left once entered.Without loss
of generality, in this paper we assume ρr < ∞ for all 1 ≤ r ≤ s∗ .
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