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a b s t r a c t

Multipliers are often used to find conditions for the absolute stability of Lur’e systems. They can be used
either in conjunction with passivity theory or within the more recent framework of integral quadratic
constraints (IQCs). We compare the use of multipliers in both approaches. Passivity theory requires
that the multipliers have a canonical factorization and it has been suggested in the literature that this
represents an advantage of the IQC theory. We consider sufficient conditions on the nonlinearity class for
the associated multipliers to have a canonical factorization.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The use of open-loop properties, such as applying the small gain
theorem as well as the passivity theorem, in order to find absolute
stability conditions for the Lur’e problem (see Fig. 1) is a common
tool in nonlinear systems theory. In this problem the stability of a
linear time-invariant (LTI) system,G, in a feedback interconnection
with a nonlinear system, φ, is studied. Decoupling the linear and
nonlinear parts reduces the complexity of the problem and allows
a solution in terms of simple conditions on the linear part. An
essential feature of this method is that stability is guaranteed for
any nonlinearity φ within an entire class of nonlinearities Φ .

Historically, a first general solution for a specific class of
nonlinearities was given by Popov (1961); his result is generalized
in Yakubovich (1967) for multivariable systems (see Heath and
Li (2009) and references therein for different multivariable
cases). The circle criterion was developed by several authors
simultaneously, but a pair of papers can be highlighted (Zames,
1966a,b). In Zames (1966a), the definition of input–output stability
using extended spaces, as proposed by Sandberg (1964), is used
and the small gain and passivity theorems are established. In
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Zames (1966b) the circle and Popov criteria are obtained as
applications of these theorems. In the proof of the Popov criterion
in Zames (1966b), the abstract concept of multiplier is interpreted
as a loop transformation, see Fig. 2.

The multiplier is an artificial system that is introduced into
the loop together with its inverse. Roughly speaking, an excess of
positivity in the nonlinear part is exploited to redress a deficiency
of positivity in the linear part. Passivity theory requires systems to
be causal, but restricting the analysis to linear causal multipliers,
i.e. systems without poles in the right half plane, leads to severe
constraints on the choice of the phase. In Zames and Falb (1968)
a factorization condition on non-causal multipliers is proposed
to overcome this restriction and recover causality in the loop
elements (see Fig. 3 and Remark 2.7).

The factorization condition on the multiplier is given by

M = M−M+ (1)

where M− and M+ are invertible and M+, M−1
+ , M∗

−
, and M∗−1

−

are causal and have finite gain. For the Lur’e problem where one
part of the loop is LTI it is natural to restrict the multipliers
themselves to be LTI. For a linear operator this is referred to as the
canonical factorization (see Section 2.2). Some special cases of this
factorization, e.g. spectral factorization, inner–outer factorization
and J-spectral factorization, have been used in H∞ control
theory (Francis, 1987). The conditions for the existence of this
factorization are summarized in the monograph (Bart, Gohberg,
Kaashoek, & Ran, 2010) which takes an operator theoretical
approach. In Goh (1996), an equivalent result was found from a
control systems perspective. Only a few papers, for instance, Chou,
Tits, and Balakrishnan (1999), have used these results for control
systems analysis.
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Fig. 1. Lur’e problem.

Fig. 2. Multiplier transformation: stability of this systems implies stability of the
original system in Fig. 1.

Fig. 3. The factorization (1) of a non-causal multiplier ensures that M+G(M∗
−
)−1

and M∗
−
φM−1

+ are causal.

In themultiplier approach the properties of a classΦ of positive
nonlinearities φ are used to find the corresponding class M of
multipliers M such that M∗φ is also positive. As an example, the
original paper (Zames & Falb, 1968) was focused in preserving
positivity for bounded and monotone nonlinearities; this class of
multipliers is known as the Zames–Falb multipliers. Then if there
exists a multiplier M within this class such that MG is strictly
positive, then the linear system G in a feedback interconnection
with any of the nonlinearities within the class (Fig. 1) is stable.

Time-domain quadratic constraints have long been considered
as a tool for absolute stability in the Russian Literature; see in
particular thework of Yakubovich, e.g. Yakubovich (1967). Safonov
(1980) generalizes Zames’ conic relation stability theorem (Zames,
1966a) to an absolute criterion based on topological separation.
In Megretski and Rantzer (1997), a theorem based on IQCs in
the frequency domain, which may be interpreted as a special
case of these general theories, has been presented. It provides a
unifying framework to combine nonlinearities using their classical
multipliers, and conditions which can be easily tested in a linear
matrix inequality (LMI) framework.

By contrast with the passivity theorem, the IQC theorem
(Megretski & Rantzer, 1997) is derived using a homotopy argument
where causality is not required. As a result, in IQC theory any
multiplier preserving positivity for φ can be used and a canonical
factorization is no longer required. This is sometimes stated as a
distinguishing advantage of the IQC formulation (Jönsson, 1997;
Megretski & Rantzer, 1997). But to date no significantly wider class
of multipliers or improved stability results has yet been found that
exploits this feature. This suggests the question: is the existence
of a canonical factorization a necessary feature of multipliers for
standard nonlinearity classes? In addition some authors still use
the classical multiplier approach (Kulkarni, Pao, & Safonov, 2011);
are their results conservative because they must then impose the
canonical factorization?

Recently, a few papers have examined the connection between
dissipativity and IQC theory (Materassi & Salapaka, 2009; Seiler,
Packard, & Balas, 2010). In this paper we restrict our attention
to the use of multipliers in the classical sense. In Fu, Dasgupta,
and Soh (2005) a different factorization is analyzed, where M+

and M− are allowed to be ‘‘tall’’; the use of this factorization
does not demonstrate equivalency, since passivity theory requires
invertible multipliers.

This paper focuses on these two questions. The main result is
that under mild assumptions on the multiplier (rational, bounded,
and positive) then both approaches lead to the same result.
Moreover, it will be shown that the assumption on the positiveness
of the multiplier does not affect the generality of the result
if the class of nonlinearities Φ includes kI (henceforward, a
scaled identity) where k is a positive constant. In particular, any
LTI multiplier that preserves positivity must have a canonical
factorization, except for certain pathological cases.

2. Problem definition

In this section some background concepts are summarized. The
first subsection gives the notation and definitions that will be
used throughout the paper. The second subsection introduces the
canonical factorization and the condition for its existence. After
that, the passivity theorem and its extension using multipliers are
shown. Finally, the general IQC theorem is given. We assume the
systems under consideration to be square.Wemake certain further
restrictions on both the IQC framework and the passivity approach
such that a straightforward comparison is possible.

2.1. Notation and definitions

The notation used throughout this paper is summarized in
Table 1.

Let Lm
2 [0, ∞) be the Hilbert space of all square integrable and

Lebesgue measurable functions f : [0, ∞) → Rm. A truncation of
the function f at T is given by fT (t) = f (t), ∀t ≤ T and fT (t) =

0, ∀t > T . In addition, f belongs to the extended space Lm
2e if fT ∈

Lm
2 for all T > 0.
Let the system S be a map from Lm

2e[0, ∞) to Lm
2e[0, ∞), with

input u and output Su. It is passive if ⟨uT , SuT ⟩ ≥ 0 for all T > 0
and u ∈ Lm

2e[0, ∞). It is (strictly) positive if ⟨u, Su⟩(>) ≥ 0 for all
u ∈ Lm

2 [0, ∞). The system S is causal if Su(t) = S(uT )(t) for all
t < T . Moreover, the system S is stable if for any u ∈ Lm

2 [0, ∞),
then Su ∈ Lm

2 [0, ∞). The system S is bounded if there exists a
constant γ such that ∥Su∥2 ≤ γ ∥u∥2.

This definition of a positive system is standard, but it is
not equivalent to the standard definition of a positive real
system (Anderson & Vongpanitlerd, 1973), where causality is
required. Although passivity and positivity definitions are often
considered equivalent, the equivalence only holds for causal
systems. Moreover, because passivity theory requires a inner
product between the input and output, the space of the input
should be the dual space of the space of the output; therefore, this
paper is restricted to square systems.

Lemma 2.1 (Section VI.9.1 in Desoer and Vidyasagar (1975)). Let S
:Lm

2e[0, ∞) → Lm
2e[0, ∞) be a causal system. Then the system is

passive if and only if it is positive.

This paper focuses the stability of the feedback interconnection
of a stable LTI system G and a bounded system φ, represented in
Fig. 1 and given by

v = f + Gw,
w = φv.

(2)

Since G is a stable LTI system, the exogenous input in this part
of the loop can be taken as zero signal without loss of generality.



Download English Version:

https://daneshyari.com/en/article/696750

Download Persian Version:

https://daneshyari.com/article/696750

Daneshyari.com

https://daneshyari.com/en/article/696750
https://daneshyari.com/article/696750
https://daneshyari.com

