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a b s t r a c t

This paper introduces the concepts of Dwell-Time invariant/contractive (DT-invariant/contractive) set,
Constraint Admissible DT-invariant/contractive (CADT-invariant/contractive) set for a discrete-time
switching systemunder dwell-time switching.Main contributions of this paper include a characterization
for a DT-contractive set, an algorithm for the computation of themaximal CADT-invariant set, a necessary
and sufficient condition for asymptotic stability of the origin of switching systems under dwell-time
switching and computation of the minimal dwell-time needed for asymptotic stability of the origin.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

This paper considers the following constrained discrete-time
switching linear system:

x(t + 1) = Aσ(t)x(t), (1a)

x(t) ∈ X, ∀t ∈ Z+ (1b)

where x(t) ∈ Rn is the state variable and σ(t) : Z+
→ IN :=

{1, . . . ,N} is a time-dependent switching signal that indicates the
current active mode of the system among N possible modes in
A := {A1, . . . , AN}. The constraint set X ⊂ Rn models physical
state constraints imposed on the system, including those arising
from the actuator via some appropriate state feedback if (1) is seen
as a feedback system.

The study of such a system is quite active in the past decade.
Most of the literature (Daafouz, Riedinger, & Iung, 2002; Liberzon
& Morse, 1999) is concern with conditions that ensure stability
of the system when σ(·) is an arbitrary switching function while
others (Hespanha & Morse, 1999; Zhai, Hu, Yasuda, & Miche,
2002) consider designing the appropriate switching functions that
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ensure stability. With a few notable exceptions (Blanchini &Miani,
2007; Blanchini, Miani, & Savorgnan, 2007) the past literature
does not consider the presence of constraints. When constraints
are present, one major focus of research is the characterization
of invariant/contractive sets that are constraint admissible. The
existence of such invariant sets for system (1) is predicated on
it being stable. Hence, studies of such sets often assume that
Ai, i ∈ IN is stable, which is a necessary condition for the
stability of the origin of (1) under arbitrary switching. Additional
conditions are required. Themost commonof these are those based
on Lyapunov function consideration. For example, the origin of
system (1) is stable under arbitrary switching upon the existence
of a common quadratic Lyapunov function (Liberzon & Morse,
1999), (pairwise) switched Lyapunov functions (Daafouz et al.,
2002), multiple Lyapunov functions (Branicky, 1998), composite
quadratic functions (Hu, Ma, & Lin, 2008) or polyhedral Lyapunov
functions (Blanchini et al., 2007). Another condition for stability
is that based on dwell-time consideration. When all Ai is stable,
stability of the origin can be ensured if the time duration spent in
each subsystem is sufficiently long (Liberzon & Morse, 1999; Zhai
et al., 2002). Upper bounds of theminimal dwell-time needed have
also appeared (Blanchini, Casagrande, & Miani, 2010; Blanchini &
Colaneri, 2010; Chesi, Colaneri, Geromel, Middleton, & Shorten,
2010; Geromel & Colaneri, 2006; Zhai et al., 2002).

Thiswork is concernwith the characterization and computation
of invariant sets or contractive sets for system (1) when σ(·)
is an admissible switching function that respects the dwell-
time consideration. In the limiting case where the dwell-time
is one sample period, σ(·) becomes an arbitrary switching

0005-1098/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2012.02.045

http://dx.doi.org/10.1016/j.automatica.2012.02.045
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:masood@nus.edu.sg
mailto:mpeongcj@nus.edu.sg
http://dx.doi.org/10.1016/j.automatica.2012.02.045


M. Dehghan, C.-J. Ong / Automatica 48 (2012) 964–969 965

function, and the corresponding invariant/contractive sets and
their computations have appeared in the literature (Blanchini
& Miani, 2007). Hence, this work can also be seen as a
generalization of those obtained for arbitrary switching systems.
Other contributions of this work include: connection between
stability of dwell-time switching systems and the stability of an
associated arbitrary switching system, a necessary and sufficient
stability condition for dwell-time switching systems, and a
procedure that determines the minimal dwell-time needed for
stability of the origin of system (1).

The rest of this paper is organized as follows. This section
ends with a description of the notations used. Section 2 reviews
some standard terminology and results for switching systems.
Section 3 shows the main results on the characterization of the
contractive set for system (1), its properties and computations,
and a procedure for determination of the minimal dwell-time
needed. Sections 4 and 5 contain, respectively, numerical examples
and conclusions. All proofs of theorems except those needed in
subsequent exposition are given in the Appendix.

The following standard notations are used. Z+ is the set of
non-negative integers. Given a matrix A ∈ Rn×n and a vector
b ∈ Rn, Aj and bk are the corresponding j-th row and the k-th
element respectively while ρ(A) denotes spectral radius of A. The
floor function, ⌊a⌋, is the largest integer that is less than scalar a.
Positive definite (semi-definite) matrix, P ∈ Rn×n, is indicated by
P ≻ 0(≽ 0) and In is the n × n identity matrix. Given a P ≻ 0,
E(P) := {x : xTPx ≤ 1}. The p-norm of a vector or a matrix
is ∥ · ∥p, p = 1, 2, ∞ with ∥ · ∥ refers to the 2-norm. Suppose
α > 0, X ⊂ Rn is a compact set that contains 0 in its interior, then
αX := {αx : x ∈ X}. Boldface 1 indicates the vector of all 1s. Other
notations are introduced when needed.

2. Preliminaries

This section begins with a review of the definitions of switching
time, dwell-time and admissible switching sequence. A switching
sequence of (1) is denoted by Sτ (t) = {σ(t − 1), . . . , σ (1), σ (0)}
with σ(·) ∈ IN . Suppose ts0 , ts1 , . . . , tsk , . . . are the switching
instants of (1) with ts0 = 0 and tsk < tsk+1 . This means that
σ(tsk) ≠ σ(tsk+1) and σ(tsk) = σ(tsk + 1) = · · · = σ(tsk+1 − 1) for
all k ∈ Z+.

Definition 1. An admissible switching sequence of system (1),
Sτ (t), with switching instants ts0 , ts1 , . . . , tsk , . . . has a dwell-time
of τ means that tsk+1 − tsk ≥ τ for all k ∈ Z+. In addition, suppose
tlast is the last switching time for an admissible sequence Sτ (t),
then t − tlast ≥ τ .

Throughout this paper, system (1) is assumed to satisfy the
following assumptions: (A1) The spectral radius of each individual
subsystem Ai, i ∈ IN is less than 1; (A2) The constraint set X is a
polytope represented by X = {x : Rx ≤ 1} for some appropriate
matrix R ∈ Rq×n; (A3) (Ai, R) is observable for at least one Ai ∈ A.

Assumption (A1) defines the family of systems considered
herewith. The polyhedral assumption of (A2) is made to facilitate
numerical computations of the invariant/contractive set of (1).
Assumption (A3) ensures the compactness of the sets. It applies to
only one i ∈ IN since the invariant/contractive set is applicable
to all admissible sequences including one where σ(k) = i for
all k ∈ Z+. Of course, if (A3) is not satisfied, system (1) can be
reformulated to consider only the observable subsystem of Ai.

3. Main results

This section begins with several definitions needed to precisely
state the contractive/invariant condition of a set for system (1)

with dwell-time consideration. For notational convenience, ASτ (t)

refers to the product Π t−1
r=0Aσ(r) associated with sequence Sτ (t) =

{σ(t − 1), . . . , σ (0)}.

Definition 2. A set Ω ⊂ Rn is said to be Dwell-Time invariant
(DT-invariant) w.r.t. system (1a) with a dwell-time τ if x ∈ Ω
implies ASτ (t)x ∈ Ω for all admissible switching sequences Sτ (t)
and for all time t .

Definition 3. A set Ω ⊂ Rn is said to be Dwell-Time contractive
(DT-contractive) w.r.t. system (1a) with a dwell-time τ and a
contractive factor λ ∈ (0, 1) if x ∈ Ω implies ASτ (t)x ∈ λΩ for
all admissible switching sequences Sτ (t) and for all time t .

It is clear from the definitions above that DT-contractivity
requires stronger conditions than DT-invariance. Indeed, the
existence of a DT-contractive set Ω implies that the origin of
system (1) is asymptotically stable. This can be seen by associating
Ω as the level set of an appropriately-defined Lyapunov function.
See Remark 3 for details.

Definition 4. A set Ω ⊂ Rn is said to be Constraint Admissible
DT-contractive/invariant (CADT-contractive/invariant) w.r.t. sys-
tem (1) with dwell-time τ and factor λ if it is DT-contractive/
invariant and x(t) ∈ X for all t ∈ Z+.

While stating the requirements for a set to be DT/CADT-
contractive/invariant, the above definitions are of limited use since
ASτ (t)x ∈ λΩ has to be satisfied by an infinite number of admissible
sequences for all t . The next theorem shows how this can be
avoided.

Theorem 1. Suppose (A1) is satisfied and let T := {τ , τ +

1, . . . , 2τ − 1}. Then, a set Ω ⊂ Rn is DT-contractive (with
contraction factor λ ∈ (0, 1)) for system (1a) with dwell time τ , if
and only if for every x ∈ Ω ,

At
i x ∈ λΩ for all t ∈ T and for all Ai ∈ A. (2)

Proof. (⇒): The solution of (1) under an admissible switching
function at time t is x(t) = ASτ (t)x0 where

ASτ (t) = · · · Akℓ
iℓ

· · · Ak1
i1
Ak0
i0

(3)

for some appropriate switching sequence Sτ (t) = {iℓ, . . . , iℓ, . . . ,
i0, . . . , i0} where ij ∈ IN and kj := tsj+1 − tsj , j = 0, 1, . . . , ℓ
being the corresponding duration times in each mode. Due to the
dwell-time requirement, each kj ≥ τ . Without loss of generality,
consider any of the Ak

i on the right hand side of (3). This term can
be decomposed into a product of matrices involving Aτ

i and one
matrix from {Aτ

i , A
τ+1
i , , . . . , A2τ−1

i }. To see this, let q = ⌊
k−τ
τ

⌋ and

Ak
i =


Aτ
i

q Ak−qτ
i . (4)

Here, the superscript k − qτ of the last term corresponds to the
remainder of k − τ when divided by τ and hence, assumes a value
from T = {τ , . . . , 2τ − 1}. Consider the rightmost term of (4).
Since for every x ∈ Ω, At

i x ∈ λΩ for all t ∈ T and for all
Ai ∈ A, it follows that Ak0−q0τ

i0
x0 ∈ λΩ for any x0 ∈ Ω . Similarly,

(Aτ
i0
)q0Ak0−q0τ

i0
x0 ∈ λq0+1Ω ⊆ λΩ as Aτ

i Ω ⊆ λΩ from (2).
Repeating this process for the rest of the terms in (3) and for all
admissible sequences completes the proof.

(⇐) Suppose Ω is DT-contractive with contraction λ, but there
exists a t ∈ T and some Ai ∈ A such that At

iΩ ⊈ λΩ . The
sequence Sτ (t) := {i, i, . . . , i}, which is admissible, violates the
DT-contractivity of Ω . �

An example that illustrates the proof is in order. Consider
A = {A1, A2}, τ = 3 and x(27) = ASτ (27)x0 = A8

1A
9
2A

10
1 x0.

Using the procedure described in the proof above, x(27) =
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