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a b s t r a c t

The computational burden that model predictive control (MPC) imposes depends to a large extent on the
way the optimal control problem is formulated as an optimization problem. We present a formulation
where the input is expressed as an affine function of the state such that the closed-loop dynamics matrix
becomes nilpotent. Using this approach and removing the equality constraints leads to a compact and
sparse optimization problem to be solved at each sampling instant. The problem can be solved with a
cost per interior-point iteration that is linear with respect to the horizon length, when this is bigger than
the controllability index of the plant. The computational complexity of existing condensed approaches
growcubicallywith thehorizon length,whereas existing non-condensed and sparse approaches also grow
linearly, but with a greater proportionality constant than with the method presented here.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In linear MPC, at every sampling instant, the optimal control
input is determined through the solution of a convex optimization
problemwith a quadratic cost and linear constraints.MPC’s natural
ability for handling physical constraints has the potential to
deliver significant performance benefits inmany application areas.
However, the very high computational demands mean that, if at
all possible, expensive power-hungry hardware is often required
to meet the application’s sampling requirements. This has so far
hindered the widespread use of the technology.

Given an estimate or measurement of the current state of the
plantx, the constrained LQR problem that we will consider is

min xTNQxN +

N−1
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subject to

x0 =x (2a)
xk+1 = Axk + Buk for k = 0, 1, 2, . . . ,N − 1 (2b)
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uk = Kxk + vk for k = 0, 1, 2, . . . ,N − 1 (2c)
Jxk + Euk ≤ d for k = 0, 1, 2, . . . ,N − 1 (2d)

where N is the horizon length, xk ∈ Rn is the state vector at sam-
ple instant k, uk ∈ Rm is the input vector, (A, B) is controllable,

(Q
1
2 , A) is detectable,


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
≥ 0, R > 0 to ensure uniqueness of

the solution, Q ≥ 0, (2c) represents a possible affine transforma-
tion on the input, J ∈ Rl×n, E ∈ Rl×m, d ∈ Rl and l is the number of
constraints. The techniques described in this note can easily be ex-
tended to problems with costs and constraints on the input rates,
time-varying costs and constraints, as well as problemswith linear
terms in the cost function.

The method employed when formulating the constrained LQR
problem as a QP has a big impact on the problem size and
structure, the resulting computational and memory requirements,
as well as on the numerical conditioning. The standard approach
makes use of the plant dynamics to eliminate the states from the
decision variables by expressing them as an explicit function of the
current state and future control inputs (Maciejowski, 2001). This
condensed formulation leads to compact anddenseQPs. In this case,
the complexity of solving the QP scales cubically in the horizon
length when using an interior-point method. For MPC problems
that require long horizon lengths, the non-condensed formulation,
which keeps the states as decision variables and considers the
system dynamics implicitly by enforcing equality constraints (Rao,
Wright, & Rawlings, 1998; Wright, 1993, 1996), can result in
significant speed-ups. With this approach the problem becomes
larger but its structure can be exploited to find a solution in time
linear in the horizon length.

0005-1098/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2012.03.010

http://dx.doi.org/10.1016/j.automatica.2012.03.010
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:jlj05@imperial.ac.uk
mailto:e.kerrigan@imperial.ac.uk
mailto:gac1@imperial.ac.uk
http://dx.doi.org/10.1016/j.automatica.2012.03.010


1000 J.L. Jerez et al. / Automatica 48 (2012) 999–1002

The non-condensed method is often also referred to as the
sparse method due to the abundant structure in the resulting
optimization problems. In this note, we show that this label does
not provide the complete picture and that it is indeed possible
to have a sparse condensed formulation that can be solved in
time linear in the horizon length. In addition, we show that this
method is at least as fast as the standard condensed formulation
and it is faster than the non-condensed formulation for a wide
variety of control problems. Our approach is based on the use
of the linear feedback policy in (2c) as a mathematical trick to
introduce structure into the problem.We chooseK such thatA+BK
is nilpotent and show that one can formulate a QP with banded
matrices in cases where the horizon length is larger than the
controllability index of the plant. The use of such feedback policies
for pre-stabilizing predictions has been previously studied as a
way of improving the conditioning of guaranteed stability MPC
algorithms (Rossiter, Kouvaritakis, & Rice, 1998). However, we find
it surprising that it has not yet been applied to introduce structure
into the problem, as we will do here, considering the important
practical implications.

Note that (2c) is effectively only a change of variables and it does
not modify the optimal control problem, hence the computed op-
timal input is independent of the transformation used. Moreover,
any procedure to guarantee stability and feasibility can still be
used. For example, if the method in Scokaert and Rawlings (1998)
is used, then Q ∈ Rn×n is the solution to the appropriate Riccati
equation, which is independent of the choice of K in (2c).

We start by reviewing existing QP formulations and analyzing
their computational complexity in the context of primal–dual
interior-point methods. However, the results stated in this paper
should have a similar impact on barrier-based interior-point
methods and active-set methods. We then present our sparse
condensed approach and compare it with existing formulations.

2. QP formulation problem

We consider the problem of formulating the optimal control
problem (1)–(2) as a convex QP of the following form:

min
θ

1
2
θ THθ + hT θ subject to Fθ = f , Gθ ≤ g. (3)

Primal–dual interior-point methods can be used to solve for
optimal θ . Algorithm 1 is a variant of an infeasible primal–dual
method (Wright, 1996), where ν and λ are Lagrangemultipliers for
the equality and inequality constraints, respectively, s is a vector
of slack variables, σ is a small constant between zero and one,
Wk := ΛkS−1

k , Λk and Sk are diagonal matrices containing the
elements of λk and sk, respectively, and µk := (λT

k sk)/(Nl) is a
measure of sub-optimality that approaches zero at the optimum.
In applications with fast dynamics, real-time requirements will
impose a hard bound on the number of interior-point iterations,
hence the number of interior-point iterations P is assumed fixed a
priori.

At each interior-point iteration, computing the matrix triple
product GTWkG (line 1) and solving the system of linear equations
Akzk = bk (line 3) account for most of the computation, hence we
will express the overall complexity considering the cost of these
operations only.

3. Non-condensed approach

The future states can be kept as decision variables and
the system dynamics can be incorporated into the problem by
enforcing equality constraints (Rao et al., 1998; Wright, 1993,
1996). In this case, for any arbitrary K , if we let θ := [xT vT ]T where
x := [xT0 x

T
1 · · · xTN ]

T , v := [vT
0 vT

1 · · · vT
N−1]

T ,

h := 0, then the remaining matrices have sparse structures that
describe the control problem (1)–(2) exactly.

Algorithm 1 Primal–Dual Interior-Point Algorithm
Choose any initial point (θ0, ν0, λ0, s0) with [λT

0 s
T
0]

T > 0
for k = 0 to P − 1 do

Ak :=


H + GTWkG F T

F 0


bk :=


−h − F Tν − GT (λk − Wkg + σµks−1

k )
−Fθk + f


Solve Akzk = bk for zk =:


(θk + ∆θk)

T ∆νT
k

T
∆λk := Wk(G(θk + ∆θk) − g) + σµks−1

k
∆sk := −sk − (G(θk + ∆θk) − g)
αk := max{α ∈ (0, 1] : (λk, sk) + α(∆λk, ∆sk) > 0}
(θk+1, νk+1, λk+1, sk+1) :=

(θk, νk, λk, sk) + αk(∆θk, ∆νk, ∆λk, ∆sk)
end for

Assuming general constraints, the number of floating point
operations (flops) for computing GTWkG is approximately Nl(n +

m)2 operations. For solving Akzk = bk, the coefficient matrix
Ak ∈ RN(2n+m)×N(2n+m) is an indefinite symmetric matrix that
can be made banded through appropriate row re-ordering (or
interleaving of variables ∆θ and ∆ν). The resulting banded matrix
has a half-band of size 2n + m. Such a linear system can be solved
using a banded LDLT factorization in N(2n + m)3 + 4N(2n +

m)2 + N(2n + m) flops (Boyd & Vandenberghe, 2004, Appendix
C), or through a block factorization method based on a sequence
of Cholesky factorizations in O(N(n + m)3) operations (Rao et al.,
1998). The memory requirements can be approximated by the
cost of storing matrices H , G, F and Ak, which are all sparse. For
time-invariant problems, thesematricesmostly consist of repeated
blocks.

4. Condensed approach

The state variables can be eliminated from the optimization
problem by expressing them as an explicit function of the current
state and the controlled variables (Maciejowski, 2001):
x = Ax + Bv, (4)
where AK := A + BK and

A :=
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. (5)

In this case, if we let θ := v, F := 0, f := 0, then we have an
inequality constrained QP with

H := BT (Q + KTRK + SK + KTST )B
+R + BT (KTR + S) + (RK + ST )B,

h :=xTAT (QB + S(KB + I) + KT (R(KB + I) + STB)),

G := (J + EK)B + E,
g := d − (J + EK)Ax,
where

Q :=


IN ⊗ Q 0

0 Q


, S :=


IN ⊗ S

0


,

R := IN ⊗ R,
K :=


IN ⊗ K 0


, J := IN ⊗ J, E := IN ⊗ E,

d := 1N ⊗ d, ⊗ denotes a Kronecker product and 1N denotes a
vector of ones of length N .
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