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a b s t r a c t

The existing low gain feedback, which is a parameterized family of stabilizing state feedback gains whose
magnitudes approach zero as the parameter decreases to zero, has been designed in very specific ways.
In this paper, by recognizing the l∞ and l2 slow peaking phenomenon that exists in discrete-time systems
under low gain feedback, more general notions of l∞ and l2 norm vanishment are considered so as to
provide a full characterization of the nonexistence of slow peaking phenomenon in some measured
signals. Lowgain feedback that does not lead to l∞ and l2 slowpeaking in the control input are respectively
referred to as l∞ and l2 low gain feedback. Based on the notions of l∞ and l2 vanishment, not only can the
existing low gain feedback be recognized as an l∞ low gain feedback, but also a new design approach
referred to as the l2 low gain feedback approach is developed for discrete-time linear systems. Parallel to
the effectiveness of l∞ low gain feedback in magnitude constrained control, the l2 low gain feedback is
instrumental in the control of discrete-time systems with control energy constraints. The notions of l∞
and l2-vanishment also result in a systematic approach to the design of l∞ and l2 low gain feedback by
providing a family of solutions including those resulting from the existing design methods.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Linear systems subject to actuator saturation have been very
well studied during the past several decades. The interest in this
problem is mainly motivated by the facts that every practical
control system is subject to actuator saturation and such saturation
is a source of limit cycles, parasitic equilibrium points and even
instability of the closed-loop system (He, Chen, & Wu, 2007; Lin,
1998; Sussmann, Sontag, & Yang, 1994). Among the problems
studied for control systems subject to actuator saturation,
stabilization is the most important and fundamental one. The first
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question asked is under what conditions a linear system can be
globally stabilized in the presence of actuator saturation. It is now
well-known that global asymptotic stabilization is possible if and
only if the linear system is asymptotically null controllable with
bounded controls (ANCBC), that is, the linear system is stabilizable
in the usual linear systems sense and all its open-loop poles are
located in the closed left-half plane (inside or on the unit circle for
discrete-time systems). It is also well known that, even under the
ANCBC assumption, nonlinear feedback is usually needed for global
asymptotic stabilization (Sussmann et al., 1994).

On the other hand, it has been shown that semi-global stabi-
lization can be achieved by linear feedback (Lin & Saberi, 1993).
The linear feedback laws that achieve semi-global stabilization for
general ANCBC linear systems subject to actuator saturation were
initially proposed in Lin and Saberi (1993) in the continuous-time
setting and then extended to the discrete-time setting in Lin and
Saberi (1995). The resulting feedback laws are known as low gain
feedback (Lin, 1998), which has found applications in solving sev-
eral other problems such as H2 and H∞ control (Chu, Liu, & Tan,
2002; Lin, 1998), global stabilization with input saturation (Grog-
nard, Sepulchre, & Bastin, 2002; Sepulchre, 2000), stability region
analysis in the presence of actuator saturation (Turner & Postleth-
waite, 2001), nonlinear stabilization (Battilotti, 2001; Sepulchre,
2000), nonlinear H∞ control (Lin, 1998) and stabilization of time-
delayed systems (Lin, 2007; Zhou & Lin, 2011). Since the initial de-
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sign of low gain feedback in Lin and Saberi (1993, 1995), several
other low gain design methods have been developed (Lin & Saberi,
1995; Lin, Saberi, & Stoorvogel, 1996; Teel, 1995; Zhou, Lin, &Duan,
2009a).

Even though low gain feedback has been widely used in the
literature, as we have noted in our recent papers (Zhou, Lin,
& Duan, 2009b,c, 2011), its characteristics have not yet been
fully understood. Slow peaking is one of them: as the state of a
continuous-time ANCBC linear system is made to converge to zero
arbitrarily slowly by placing the poles of the closed-loop system
close to the imaginary axis, its magnitude will climb slowly to
an arbitrarily high value during the convergence process. Roughly
speaking, the state cannot converge to zero very slowly without
experiencing expansion in its magnitude. In a continuous-time
setting, the slow peaking phenomenon has been recognized in
Lin (1998) and utilized in semi-global stabilization of cascade
nonlinear systems (Sepulchre, 2000).

As has been observed in the very beginning of the development
of low gain feedback (Lin & Saberi, 1993), although the slow
peaking phenomenon cannot be avoided in the state evolution
of the closed-loop system under low gain feedback, the control
signal that results from the multiplication of the state and the
feedback gain can however be kept under an arbitrarily low level
by decreasing the value of the low gain parameter. Therefore, the
success of low gain design can be intuitively understood as the
peaking in the different components of the state canceling each
other when they are summed with feedback gains as weighting
factors. Prompted by such an observation, the more general
problems called norm vanishment were initially studied in Zhou
et al. (2009b,c, 2011) in the continuous-time setting. The notion of
norm vanishment not only results in a rigorous definition of the
existing (L∞) low gain feedback, but also reveals some differences
and connections between the traditional L∞ low gain feedback
and the newly proposed L2 low gain feedback, which has been
shown to play a very important role in the stabilization of linear
systems with the control energy constraints. By characterizing
the necessary and sufficient conditions for norm vanishment,
necessary and sufficient conditions for testing whether a feedback
gain is an L∞ or an L2 low gain feedback were proposed. As a by-
product, a systematic approach to the design of low gain feedback
was established, which results in a family of solutions to the L∞

and L2 low gain feedback design.
The aim of the present paper is to extend the results obtained in

Zhou et al. (2009b,c, 2011) to discrete-time setting. After clarifying
that the slow peaking phenomenon that exists in a continuous-
time setting also exists in the discrete-time linear systems under
low gain feedback design, we will introduce the notions of l∞
and l2 norm vanishment. A couple of equivalent characterizations
of these notions in terms of the coefficient matrices will be
established. As applications of these new notions, the l∞ and
l2 low gain feedback are introduced for discrete-time linear
systems subject to input magnitude constraints and input energy
constraints, respectively. It is shown that the l2 low gain feedback
can be utilized to achieve semi-global stabilization of discrete-time
ANCBC linear systems with control energy constraints. Moreover,
by utilizing the proposed characterizations of l∞ and l2 norm
vanishment, a systematic approach is also established to the design
of l∞ and l2 low gain feedback for discrete-time ANCBC linear
systems. This new approach yields a family of solutions rather
than a particular one such as the eigenstructure assignment based
approach (Lin & Saberi, 1995), by introducingmore design freedom
that can be utilized to achieve other requirements, for example,
improved transient performances of the closed-loop systems.

Although the work of this paper has been motivated by
its continuous-time counterparts (Zhou et al., 2009b,c, 2011),
the development of the results involve techniques that are

very different from those used in Zhou et al. (2009b,c, 2011).
For example, in comparison with the continuous-time setting
considered in Zhou et al. (2009b,c, 2011), the necessary condition
for characterizing the l∞ and l2 norm vanishment in a discrete-
time setting is harder to prove and requires the establishment of
quite a different technique. In the continuous-time setting, the
necessary condition is proven via contradiction by showing that
the peaking phenomenon will appear in the measured signals at
the time that is specified as a continuous function of the low
gain parameter. However, in the discrete-time setting, as the
time variable is varying discretely but the low gain parameter is
varying continuously, we must find a new approach to detect the
peaking phenomenon in the measured signals when the low gain
parameter approaches zero (see the proof of Lemma 2 for details).

As another example, in the development of the systematic
approach to the Lφ low gain design in the continuous-time setting
(Zhou et al., 2009b,c, 2011), the poles of the closed-loop system
are obtained by shifting the open loop poles to their left by ε,
the low gain parameter, and correspondingly, the Jordan form
of the closed-loop system is obtained by shifting the open loop
Jordan by −εI . In developing the lφ low gain design in the present
discrete-time setting, while the poles of the closed-loop system
are obtained by shrinking the poles of the open-loop system by
a factor of 1 − ε, the Jordan form of the closed-loop system is
not obtained from the Jordan form of the open-loop system by a
factor of (1− ε)I , as one may expect. As a result, some nonsingular
parametric matrices should be constructed explicitly to transform
the closed-loop system matrices into their Jordan canonical forms
(see the proof of Theorem 5 for details).

The remainder of this paper is organized as follows. The l∞
and l2 slow peaking phenomena that result from the low gain
feedback control for discrete-time linear systemswill be examined
in Section 2, where the problems of low gain feedback analysis
and design are also given formally. In Section 3, we give solutions
to the problem of low gain analysis by formally defining of the
notions of l∞-vanishment and l2-vanishment and developing a
series of necessary and sufficient conditions to test these two
properties. Consequently, solutions to the problem of low gain
design are proposed in Section 4. A numerical example is presented
in Section 5 to illustrate the design procedure of l∞ and l2 low gain
feedback. The paper is concluded in Section 6.

Notation. In this paper, we will use fairly standard notation.
We use AT , λ (A) , det (A) and rank (A) to denote the transpose,
the eigenvalue set, the determinant, and the rank of matrix
A, respectively. The symbol I [p, q], where p and q are two
integers with p ≤ q, denotes the set {p, p + 1, . . . , q} , C⊙ ,
{z : |z| < 1}, Z , {0, 1, 2, . . .}, sat(ui) , sign(ui)min{1, |ui|},
F , {f (ε) : [0, 1] → [0, 1]}, and


k
n


, n!

k!(n−r)! denotes the
number of combinations. For a nonnegative number a, the symbol
ceil(a) rounds the elements of a to the nearest integers greater than
or equal to a. For two matrices A ∈ Rm×n and B ∈ Rp×q, A ⊗ B
denotes their Kronecker product. The notation ∥A∥ refers to any
norm of matrix A if the subscript is omitted and ∥A∥F refers to
the Frobenius norm of A. We use Jordn {a} to denote the (block)
Jordan matrix whose n diagonal elements are a. Furthermore, we
useNn , Jordn {0} ∈ Rn×n to denote a nilpotentmatrix.We denote
by diag {Ai}

q
i=p a (block) diagonal matrix whose diagonal elements

are Ai, i ∈ I [p, q]. For a function F (k) : Z → Rm×n, the l∞ norm
and l2 norm of F (k), if they exist, are respectively defined as

∥F (k)∥l∞ , sup
k∈Z
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and
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