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A B S T R A C T

An improved gridded polycyclic aromatic hydrocarbon (PAH) emission inventory for the lower reaches of the
Yangtze River Delta (YRD) region from 2001 to 2015 was developed using satellite data. Despite rapid increases
in energy consumption, the annual total emissions of the 16 PAHs showed overall decreasing trends, from a
maximum of 5445 t in 2001 to a minimum of 2619 t in 2015, with the largest decline (84.6%) observed in the
residential sector. Different spatial allocation methods used in gridded PAH emission inventories have sub-
stantial influences on the distributions of PAHs; therefore, we improved the accuracy of the spatial allocation of
industrial and open biomass burning PAH emissions using various satellite data. The gridded secondary and
tertiary industrial GDP (GDP23) calculated using corrected nighttime light data was the best spatial proxy for the
spatial allocation of industrial PAH emissions in the YRD region. We generated a gridded burned area for
2001–2015 by coupling the MCD64A1 and MCD14ML fire products, which was used to allocate PAH emissions
from open biomass burning. Finally, we found that changes in the spatial distribution of PAH emissions were
mainly driven by energy consumption and degree of technological advancement in different regions during
2001–2015.

1. Introduction

Airborne polycyclic aromatic hydrocarbons (PAHs) are typically
generated by incomplete combustion or pyrolysis of fossil and biomass
fuels and various industrial processes [1]. PAH exposure is associated
with lung cancer and other diseases [2,3]. Efforts have been made to
estimate PAH emissions in some regions (e.g., European Union, United
States, China, and East Asia) [4–7], but the long-term trends in PAH
emissions require additional research. Research of the long-term trends
in PAH emissions have mainly focused on developed countries, which
have shown declines in PAH emissions since 1990 because of techno-
logical improvements related to traffic sources [5,6,8]. By contrast,
studies of the long-term trends in developing countries are scarce, al-
though a few studies have found that PAH emissions in developing
countries have shown a slowly declining trend since 1995 due to energy

transitions in the rural residential sector [5].
In China, many initiatives (e.g., replacement of residential coal

cooking stoves with natural gas stoves) in the rural residential sector
have been implemented in recent years [9], which may have further
decreased PAH emissions. In addition, owing to rapid urbanization
under economic transition, the spatial distribution patterns of fuel
consumption and energy structure have been changing rapidly in China
[10], which may significantly affect the distribution of PAH emissions.
Therefore, the spatiotemporal variations in PAH emissions warrant a
closer examination in China.

Several organizations have established gridded PAH emission in-
ventories (e.g., PKU-PAH, EDGARv4, EMEP, and REAS-POP)
[4,5,11,12], but have used markedly different spatial allocation
methods for industrial and other sources. Such differences in spatial
proxies substantially influence PAH distributions in gridded emission
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inventories. For industrial sources, products of gridded population, land
cover, and original nighttime light (NL) data have been used as spatial
proxies in most PAH emission inventories [4,11,12]. However, these
studies are subject to possible biases and limitations. For example, some
studies have assumed that the spatial distributions of PAH emission
sources do not vary temporally [4,13], or have used spatial proxy data
from adjacent years to allocate PAH emissions [14], which may in-
troduce uncertainty. Furthermore, using population data as a spatial
allocation proxy involves high uncertainty due to differences in energy
consumption per capita.

By contrast, gross domestic product (GDP) or secondary and tertiary
industrial GDP (GDP23) may represent good spatial proxies of industrial
PAH emissions. Numerous studies have illustrated a strong relationship
between GDP and energy consumption [7,15], especially in China,
where a long-running equilibrium relationship between economic
growth and energy consumption has been found [15,16]. However, few
studies have used gridded GDP data as a spatial proxy, because publicly
available gridded GDP data are often not continuous [17]. Recent stu-
dies have modeled gridded GDP using corrected NL data [18,19], sol-
ving the biases of the original NL data (e.g., pixel saturation in urban
centers and a lack of continuity/comparability of data from the Defense
Meteorological Satellite Program’s Operational Linescan System
(DMSP-OLS)) [20]. Suomi National Polar-Orbiting Partnership Visible
Infrared Imaging Radiometer Suite (NPP-VIIRS) NL data were released
in early 2013, greatly improving the accuracy and resolution of NL data
[21]; regardless, biases exist in the NPP-VIIRS data, including abnormal
light detection and background noise [22].

For open biomass burning, most studies have allocated total open
biomass emissions to grid boxes based on population density, land-use
type, or biomass area, leading to relatively high uncertainties [23,24].
Other studies have allocated open biomass burning according to sa-
tellite data [25,26]; however, using only one satellite fire product to
allocate open biomass burning may be problematic. For example, NCAR
Fire Inventory (FINN) studies have used the MODIS active fire product
MCD14ML, which can capture small fires [27] but may underestimate
emissions due to the temporal limitations of the satellite for capturing
fire points (10:30∼13:30) [28]. Meanwhile, another product,
MCD64A1, has a 500× 500-m resolution, and can only identify large
fires [29].

The lower reaches of the Yangtze River Delta (YRD), characterized
by a high population density and well-developed industries [30], ac-
counted for only 2.2% of China by area, but represented 20.1% of the
GDP and 13.7% of the total energy consumption in 2015 [31]. More-
over, rapid industrialization and urbanization has led to a 7.3-fold in-
crease in energy consumption over the past 30 years [31], resulting in
severe air and soil PAH contamination [32,33]. The YRD region has
among the highest PAH emission densities in China, directly threa-
tening local environmental quality and human health [14,34]. There-
fore, it is critical to identify the long-term trends and spatial distribu-
tion in PAH emissions in the lower reaches of the YRD.

The main objectives of this study are to (1) improve the accuracy of
the spatial allocation of industrial PAH emissions using gridded GDP23
data calculated using corrected DMSP-OLS and NPP-VIIRS NL data, (2)
improve the accuracy of the spatial allocation of open biomass burning
PAH emissions by coupling two types of satellite data, and (3) establish
a gridded PAH emission inventory for the lower reaches of the YRD
from 2001 to 2015.

2. Data and methodology

2.1. Study area

The lower reaches of the YRD is among the most developed regions
in China, with 25 cities and three provinces (Shanghai, Zhejiang, and
Jiangsu) (Fig. 1). However, high energy consumption has resulted in
severe pollution of various environmental compartments [33,35,36].

2.2. Gridded emission inventory framework

The 16 PAHs included in this study were naphthalene (NAP), ace-
naphthylene (ACY), acenaphthene (ACE), fluorine (FLO), phenanthrene
(PHE), anthracene (ANT), fluoranthene (FLA), pyrene (PYR), benz(a)
anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), benzo
(k)fluoranthene (BkF), benzo(a)pyrene (BaP), dibenz(a,h)anthracene
(DahA), indeno(l,2,3-cd)pyrene (IcdP), and benzo(g,h,i)perylene
(BghiP).

In total, 30 emission sources of the 16 PAHs were divided into five
sectors (Table S1): power generation, industry, residential, transporta-
tion, and agriculture. Among these, the industrial sector included pri-
marily industrial coal and oil combustion, petroleum refinery, primary
aluminum production, and the iron–steel industry. The residential
sector included primarily domestic coal, indoor straw burning, and
firewood combustion. The agricultural sector included outdoor straw
burning. PAH emissions (EPAH) were calculated using Eq. (1):

∑= × ×E A X EFPAH
i k l

i k i k l j k l
, ,

, , , , ,
(1)

where i, k, and l represent the sector, fuel or product, and technology,
respectively; EF is the emission factor of each PAH species j and was
derived from previous studies (Table S2) [5,7,37]; and X is the fraction
of the activity rate contributed by a given technology, which was cal-
culated using the technology split method, where 17 sources were
considered. The time-dependent fractions of these technology divisions
were calculated using a series of S-shaped curves (Table S3) [5,38].
Most activity data (A) were obtained directly from statistical yearbooks
[31,39–42]. Moreover, the amount of combusted crop residue was es-
timated using Equation (S2).

To minimize uncertainty in the PAH emission spatial distributions,
we first calculated PAH emissions from different sources at a provincial
scale during 2001–2015. Then, we applied various methods to spatially
allocate the provincial PAH emissions into grid cells (Fig. 2). Finally, we
developed a PAH emission inventory with a 6× 6-km spatial resolution
for the lower reaches of the YRD from 2001 to 2015 by combining the
gridded PAH emissions from different provinces.

2.3. Spatial allocation of industrial PAH emissions using nighttime light
data

Gridded GDP23 values for 15 consecutive years were used as spatial
surrogates for the industrial PAH emission sources. The gridded GDP23
data were modeled using corrected annual DMSP-OLS and NPP-VIIRS
NL data. The annual DMSP-OLS data (2001–2013) included data ac-
quired by four DMSP satellites: F14, F15, F16, and F18 (http://www.
ngdc.noaa.gov/eog/dmsp/downloadV4composites.html). The monthly
NPP-VIIRS data (2013–2015) were derived from https://www.ngdc.
noaa.gov/eog/viirs/. Details of the DMSP-OLS and NPP-VIIRS data
correction methods are described in Section S3. After correcting the
DMSP-OLS (2001–2013) and NPP-VIIRS (2013–2015) data, we allo-
cated the GDP23 data with Eq. (2) using an intercept of 0:

= ×GDP GDP GDP DN( )y sum y pixel23 23 , ,y pixel y sum, , (2)

where GDP23y,pixel denotes the GDP23 in each pixel of each year
(2001–2015); GDP23y,sum denotes the total GDP23 of each year in the
lower reaches of the YRD; TNLy,sum is the sum the total NL of each year
in the study area; and DNy,pixel denotes the sum of the digital number
values in each pixel of each year.

We assessed the accuracy of five spatial allocation proxies, popu-
lation data, original gridded DMSP-OLS and NPP-VIIRS NL data (DMSP
and NPP-VIIRS), and estimated gridded GDP23 data based on the cor-
rected DMSP-OLS/NPP-VIIRS NL data (GDP23-DMSP and GDP23-NPP-
VIIRS). Then, we identified the best spatial proxies for industrial PAH
emissions. The year 2013 was selected for study because data coverage
was available for both DMSP-OLS and NPP-VIIRS NL data. We collected
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