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a b s t r a c t

We present a computational framework for identifying a set of initial states fromwhich all trajectories of
a piecewise affine (PWA) system with additive uncertainty satisfy a linear temporal logic (LTL) formula
over a set of linear predicates in its state variables. Our approach is based on the construction and
refinement of finite abstractions of infinite systems. We derive conditions guaranteeing the equivalence
of an infinite system and its finite abstractionwith respect to a specific LTL formula and propose amethod
for the construction of such formula-equivalent abstractions. While provably correct, the overall method
is conservative and expensive. A tool for PWA systems implementing the proposed procedure using
polyhedral operations and analysis of finite graphs is made available. Examples illustrating the analysis
of PWA models of gene networks are included.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, there has been increasing interest in developing
computational tools for temporal logic analysis and control
of dynamical systems (Fainekos, Kress-Gazit, & Pappas, 2005;
Kloetzer & Belta, 2008a; Tabuada & Pappas, 2006). In this paper,
we focus on piecewise affine systems (PWA) that evolve along
different discrete-time affine dynamics in different polytopic
regions of the (continuous) state space. PWA systems are widely
used, since they can approximate nonlinear dynamics with
arbitrary accuracy, and are equivalent to other classes of hybrid
systems (Heemels, De Schutter, & Bemporad, 2001). In addition,
techniques for the identification of suchmodels fromexperimental
data are available (Juloski et al., 2005).

We are interested in developing a method for the analysis
of PWA systems from LTL specifications that leads to more
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informative results than simple Yes/No answers. We consider the
following problem: given a PWA system with additive, polytopic
parameter uncertainties and an LTL formula over an arbitrary set
of linear predicates in its state variables, find the largest region
of initial states from which all trajectories of the system satisfy
the formula. Our approach is based on the construction, iterative
refinement and verification of finite abstractions inspired by LTL
model checking (Baier, Katoen, & Larsen, 2008) and bisimulation-
based refinement (Bouajjani, Fernandez, & Halbwachs, 1991). The
construction of abstractions is enabled by our previous results
(Yordanov & Belta, 2010), where we showed that finite quotients
of PWA systems can be constructed by using polyhedral operations
only. Our refinement procedure is guided by formula equivalence,
i.e., at each iteration we aim at constructing a finite abstraction of
the PWA system that satisfies exactly the same formula.

This work can be seen in the context of literature focused on the
construction of finite quotients of infinite systems, and is related to
Clarke et al. (2003), Pappas (2003) and Tabuada and Pappas (2006).
The embedding of discrete-time systems into transition systems
is inspired from Pappas (2003) and Tabuada and Pappas (2006).
However, while the focus there is on characterizing the existence
of bisimulation quotients or developing control strategies using
such quotients for linear systems, in this work we consider an
analysis problem and focus on the computation of finite quotients,
which are equivalent to the original, infinite PWA system with
respect to the satisfaction of a specific LTL formula. The related
idea of defining CTL formula-specific equivalences coarser than
bisimulation has been explored in Aziz, Shiple, Singhal, Brayton,
and Sangiovanni-Vincentelli (2002) in the context of finite state
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systems. A trace-equivalent quotient, which might be coarser than
a bisimulation one, can be used to analyze an infinite system with
any LTL formulas (e.g. see Henzinger, Majumdar, & Raskin, 2005).
Instead, our method can lead to the construction of quotients that
are even coarser but are equivalent with the infinite system with
respect to a specific formula only.Whilewe focus on the analysis of
PWA systems, methods targeting other classes of infinite systems
might also benefit from the construction of formula-equivalent
quotients, provided that all operations required by themethod can
be implemented.

Our methods differ from counterexample-guided refinement
(CEGAR) (Clarke et al., 2003) (a different strategy for specification-
based refinement) in two ways. First, instead of performing
many model checking steps, in this work we aim directly at the
construction of formula-equivalent quotients. Second, we obtain
more informative results by identifying satisfying and violating
regions (i.e. regions of initial conditions fromwhich all trajectories
of the system satisfy or violate the specification). This resembles
the construction and refinement of 3-valued abstractions (Bruns
& Godefroid, 1999; Chechik & Ding, 2002). While the analysis
of PWA systems for properties such as stability, invariance and
reachability has been considered previously (Bemporad, Torrisi, &
Morari, 2000), our approach allows greater expressivity through
LTL specifications.

Compared to our previous approach to the analysis of PWA sys-
tems (Yordanov & Belta, 2010), in this paper we develop amore ef-
ficient procedure by constructing formula-equivalent abstractions
coarser than bisimulation. In addition, we derive conditions un-
der which the analysis results are exact although, in general, the
overall procedure is still conservative. A preliminary version of this
work was presented in Yordanov, Tumova, Belta, Cerna, and Bar-
nat (2010), where only fixed parameter PWA systems were con-
sidered. In this paper, we extend the method from Yordanov et al.
(2010) to handle uncertain parameter systems, while introduc-
ing additional optimizations to our analysis procedure. The algo-
rithms presented here were implemented as a tool available at
http://hyness.bu.edu/software.

2. Preliminaries and notation

We assume familiarity with the following notions (for details
see, e.g., Baier et al., 2008) and only introduce some preliminaries.

A transition system is a tuple T = (Q , →,O, o), where Q is a
(possibly infinite) set of states, →⊆ Q × Q is a transition relation,
O is a finite set of observations, and o : Q → O is an observation
map. We denote by PreT (X) = {x ∈ Q | ∃x′

∈ X, x → x′
} the

states that reach region X ⊆ Q in one step.We denote the language
of T starting from X as LT (X) and use LT for LT (Q ).

We use the graphical notation for the LTL operators (i.e. � for
always and ♦ for eventually). Given an LTL formula φ over O, we
write T (X) � φ if all the words from LT (X) satisfy φ. Let Xφ

T =

{x ∈ Q | T (x) � φ} denote the largest region of T satisfying φ.
For a finite T , the set Xφ

T can be computed throughmodel-checking
(Baier et al., 2008).

We use ∼o to denote the equivalence relation induced by o over
Q (i.e. for x1, x2 ∈ Q , x1∼ox2 iff o(x1) = o(x2)) and ∼b to denote
the coarsest, observation-preserving bisimulation. The quotient
T /∼o = (Q /∼o , →∼o ,O, o∼o) simulates T , while T and T /∼b are
bisimilar. This leads to the following relationships between the
region Xφ

T for T and its quotients3

con(Xφ

T /∼o
) ⊆ con(Xφ

T /∼b
) = Xφ

T . (1)

3 The concretization con()maps a region of a quotient to its corresponding region
in the concrete system T .

A Büchi automaton is a tuple B = (S, S0,O, δB, F) where S is a
finite set of states, S0 ⊆ S is the set of initial states, O is the input
alphabet, δB : S ×O → 2S is a transition function and F ⊆ S is the
set of accepting states. For any LTL formula φ, a Büchi automaton
denoted by Bφ that accepts all and only words satisfying φ can
be constructed. A product automaton P = T ⊗ Bφ is a Büchi
automaton4 P = (SP , SP0, δP , FP) where SP = Q × S, SP0 = Q × S0,
and FP = Q × F . P accepts all and only words from LT satisfying φ.
We denote the projection of states of P to states of T byα : SP → Q
(i.e. for a state (x, s) of P, α((x, s)) = x ∈ Q ).

3. Problem formulation and approach

Let Xl, l ∈ L be a set of open polytopes in RN , where L is a
finite index set, such that Xl1


Xl2 = ∅ for all l1, l2 ∈ L, l1 ≠ l2

and X = ∪l∈L cl(Xl) is a closed full-dimensional polytope in RN

(cl(Xl) denotes the topological closure of set Xl). A discrete-time
piecewise affine (PWA) system is defined as:

xk+1 = Alxk + bl, xk ∈ Xl, l ∈ L, k = 0, 1, . . . , (2)

where, for each mode l ∈ L, parameter bl is uncertain but known
to belong to a polyhedral region Bl ⊂ RN . We assume that X
is an invariant for all trajectories of the system and matrix Al is
nonsingular for all l ∈ L.

We are interested in properties of (2) specified over the poly-
topes from its definition.5 More specifically, given LTL formula φ
over Lwe seek the largest initial region from which all trajectories
of the PWA system satisfy φ. To formalize this problem, we define
the semantics of PWA systems through a transition system embed-
ding6:

Definition 1. Let Te = (Qe, →e,Oe, oe), where Qe = ∪l∈L Xl;
x→e x′ iff there exist l ∈ L, bl ∈ Bl such that x ∈ Xl and
x′

= Alx + bl;Oe = L; oe(x) = l iff x ∈ Xl. Given X ⊆ Qe, all
trajectories of system (2) originating in X satisfy an LTL formula φ
iff Te(X) |H φ.

From Definition 1, the main problem considered in this paper
is formalized as the computation of Xφ

Te . Since Te has an infinite
number of states, it cannot be analyzed directly, which motivates
us to consider the generalized problem:

Problem 1. Given an infinite transition system T and an LTL for-
mula φ over its set of observations O, find Xφ

T .

We assume that the quotient T /∼o can be constructed (in Yordanov
and Belta (2010) we showed that this is indeed the case for Te).
Then, the set Xφ

T /∼o
can be computed and used as in Eq. (1) to

obtain an under-approximation of Xφ

T , leading to a conservative
solution to Problem 1. The bisimulation algorithm (Bouajjani et al.,
1991) can then be used to decrease this conservatism (a similar
idea was applied in Chutinan and Krogh (2001) for ACTL). The
equivalence relations ∼i produced at the i-th iteration of the
bisimulation algorithm (i.e. ∼0 = ∼o and ∼i+1 refines ∼i) provide
approximations of Xφ

T with increasing accuracy (i.e. con(Xφ

T /∼i
) ⊆

con(Xφ

T /∼i+1
)). If the algorithm terminates at step k (which cannot

be guaranteed for general infinite systems), the bisimulation ∼k =

∼b leads to an exact solution as shown in Eq. (1).

4 The singleton input alphabet of P is omitted.
5 These polytopes can capture arbitrary linear predicates.
6 Such a formalization was also used in Yordanov and Belta (2010) where several

additional remarks were considered.
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