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a b s t r a c t

We investigate a type of disturbance decoupling problem (DDP) of Boolean control networks. Using the
semi-tensor product of matrices, the dynamics of a Boolean control network is expressed in its algebraic
form. Under the framework of output-friendly subspace, we give a necessary and sufficient condition for
the solvability of DDP by analyzing the redundant variables, and we present a computationally feasible
method to construct all the valid feedback control matrices. The logical functions of each controller can
be recovered from the obtained feedback control matrix. Finally, an example is provided to show the
effectiveness of the proposed method.

Crown Copyright© 2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The Boolean network (BN) is often used as a model for gene
regulation which treats genes as binary nodes that are either
expressed or unexpressed (Dee & Ghil, 1984; Kauffman, 1969,
1993). It is also a candidate for representing a class of behaviors
observed in large regulatory networks (see Kauffman, Peterson,
Samuelsson, & Troein, 2003 ). In order tomanipulate networks, the
control of BNs is a very important topic (e.g., Akutsu, Hayashida,
Ching, & Ng, 2007; Ideker, Galitski, & Hood, 2001). A Boolean
control network (BCN) can be considered as a BN with additional
binary inputs and outputs. One canuse various existing approaches
to investigate BCNs.

Recently, Cheng and colleagues have proposed a semi-tensor
product (STP) technique, which can express the dynamics of BNs
in an algebraic state-space form and is hence useful for studying
the dynamics and control of BNs (Cheng & Qi, 2010; Cheng, Qi,
& Li, 2011). With this technique, the structures of attractors and
basins of BNs were analyzed in Cheng (2009) and Yang and Chu
(2012), and the complete synchronization of BNs was examined
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in Li and Chu (2012). Some control problems concerning BNs,
such as controllability and observability (Cheng & Qi, 2009; Li
& Sun, 2011a), realization (Cheng, Li, & Qi, 2010), stability and
stabilization (Li & Sun, 2011b)were addressed in the samemanner.
Besides, the STP technique has also extended to other problems in
a wider range of applications (Li & Wang, 2012; Xu & Hong, 2012).

Disturbance decoupling problem (DDP) is a fundamental prob-
lem in control theory. Most existing studies of DDP are concerned
with linear systems (Wonham, 1979), smooth nonlinear systems
(Isidori, 1995), and switched systems (Yurtseven, Heemels, & Cam-
libel, 2012; Zhang, Cheng, & Li, 2005). The geometric control theory
has been widely used to solve the DDPs for these systems. How-
ever, for the case of BCNs, there have been only a few results on
DDPs available to date. In Cheng (2011), a type of DDP for BCNs is
investigated based on the STP technique. The basic idea for solving
DDP proposed in Cheng (2011) consists of two key issues. Firstly,
finding a coordinate transformation such that in the new coordi-
nate frame, the outputs are only involved in a set of coordinates,
and these coordinates form a output-friendly subspace. Secondly,
finding controllers such that the dynamic equations of the output-
friendly coordinate variables are disturbance independent. Cheng
(2011) proposed an algorithm to solve the first issue. As for the sec-
ond issue, the condition for the solvability of DDP was derived and
how to solve DDP by constant controls based on canalizing Boolean
mappingwas discussed. However, to the best of our knowledge, no
direct method of finding all the existent controllers has been pre-
sented in Cheng (2011) and the references therein.

The aim of this paper is to find all the existent controllers
to solve DDP, which is also referred to as controller design. We
first derive the algebraic form of the BCN by using the STP tech-
nique. Then, for a given output-friendly subspace, we design the
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controllers such that the output-friendly subspace is disturbance
invariant.

The rest of the paper is organized as follows. Section 2
gives preliminaries concerning the algebraic expression of BCNs
and the coordinate transformation. Section 3 presents the DDP
formulation. A method for designing DDP controllers is proposed
in Section 4. An example is given in Section 5 to illustrate the
proposed method. Section 6 offers concluding remarks.

2. Preliminaries

This section gives a brief introduction to the STP ofmatrices, the
algebraic form and the coordinate transformation of BCNs.

The STP of matrices was first proposed by Cheng et al. (2011).

Definition 1 (Cheng & Qi, 2010). Given an m × n matrix A and a
p × qmatrix B, the STP of A and B is defined as

A n B = (A ⊗ Il/n)(B ⊗ Il/p),

where ‘‘⊗’’ is the Kronecker product of matrices and l is the least
common multiple of n and p.

Note that if n = p, then AnB = AB. Hence, the STP ofmatrices is
a generalization of the conventional matrix product. Based on this,
the symbol ‘‘n’’ is omitted in most cases hereafter.

Let δi
n be the i-th column of the identitymatrix In. Set∆n = {δi

n |

1 ≤ i ≤ n}. For notational ease, denote ∆ = ∆2. Denote by Col(A)
the set of columns of a matrix A. An n× smatrix L is called a logical
matrix if Col(L) ⊂ ∆n. The set of n×s logicalmatrices is denoted by
Ln×s. We simplywrite an n×s logical matrix L = [δ

i1
n , δ

i2
n , . . . , δis

n ]

as L = δn[i1, i2, . . . , is].
Let D = {1, 0}. A logical function is a mapping from Dn to D .

A logical mapping F : Dn
→ Dk is defined by k logical functions.

Let Fl{x1, . . . , xn} denote the set of logical functions with logical
arguments x1, . . . , xn.

To use the algebraic expression of logical mappings, we identify
the elements in D with 2-dimensional vectors as: 1 ∼ δ1

2, 0 ∼ δ2
2 .

Then a logical mapping F = (f1, . . . , fk) : Dn
→ Dk can be

regarded as a mapping from ∆n to ∆k. Referring to Cheng and Qi
(2010), there exists a unique matrixMF ∈ L2k×2n such that

k
n
i=1

fi(x1, . . . , xn) = MF
n
n
i=1

xi

for every (x1, . . . , xn) ∈ ∆n. We callMF the structure matrix of the
logical mapping F .

Now we introduce some special logical matrices that will
be used in the later discussion. Let Mc,Md,Mi,Me, and Mn
denote, respectively, the structurematrices of the logical operators
conjunction∧, disjunction∨, conditional→, biconditional↔, and
negation ¬. Then

Mc = δ2[1, 2, 2, 2], Md = δ2[1, 1, 1, 2],
Mi = δ2[1, 2, 1, 1], Me = δ2[1, 2, 2, 1], Mn = δ2[2, 1].

For each n ∈ N, let

Ψ (n) = δ22n [1, 2
n
+ 2, 2 · 2n

+ 3, . . . , (2n
− 1)2n

+ 2n, 22n
].

A straightforward computation shows that

x2 = Ψ (n)x, x ∈ ∆2n .

Letm, n ∈ N. The swap matrixW[m,n] is defined as

W[m,n] = δmn[1,m + 1, . . . , (n − 1)m + 1, 2,m + 2, . . . ,
(n − 1)m + 2, . . . ,m, 2m, . . . , nm].

It is easy to verify that

x2x1 = W[m,n]x1x2, x1 ∈ ∆m, x2 ∈ ∆n.

The dummy matrix Ed is defined as

Ed = δ2[1, 2, 1, 2].

Since Edδ1
2 = Edδ2

2 = I2, it follows that Edx = I2 for x ∈ ∆, so that

Edx1x2 = x2, EdW[2,2]x1x2 = x1, x1, x2 ∈ ∆.

We are now ready to introduce the algebraic form of BCNs.
In general, the dynamics of a BCN with n nodes, m inputs, and p
outputs can be expressed asxi(t + 1) = fi(u1(t), . . . , um(t), x1(t), . . . , xn(t)),

i = 1, . . . , n,
yj(t) = hj(x1(t), . . . , xn(t)), j = 1, . . . , p,

(1)

where xi(t), uk(t), and yj(t) are the state, control input, and output
at the time t , respectively. Suppose Mfi ∈ L2×2m+n and Mhj ∈

L2×2n are the structure matrices of the logical functions fi and hj,
respectively. Let x(t) = nn

i=1 xi(t) and u(t) = nm
k=1 uk(t). It then

follows from (1) that
xi(t + 1) = Mfiu(t)x(t), i = 1, . . . , n,
yj(t) = Mhjx(t), j = 1, . . . , p. (2)

Moreover, by multiplying all the state equations and output
equations in (2) respectively, the dynamics of the BCN (1) can
further be expressed as
x(t + 1) = Lu(t)x(t),
y(t) = Hx(t),

where L = Mf1 nn
i=2[(I2m+n ⊗ Mfi)Ψ (n + m)] ∈ L2n×2n+m and

H = Mh1 np
j=2[(I2n ⊗ Mhj)Ψ (n)] ∈ L2p×2n .

The coordinate transformation (or coordinate change) of a
logical dynamics was first introduced in Cheng et al. (2010).

Definition 2. Let (x1, . . . , xn) be the state variables of nodes of a
Boolean (control) network. A mapping F : Dn

→ Dn is said to be
a logical coordinate transformation, if F is a bijective mapping.

Definition 3. Let y1, . . . , yk ∈ Fl{x1, . . . , xn}.{y1, . . . , yk} is said
to be a k-dimensional regular subspace with regular sub-basis
{y1, . . . , yk} if there exist yk+1, . . . , yn ∈ Fl{x1, . . . , xn} such that
{xi | i = 1, . . . , n} → {yi | i = 1, . . . , n} is a coordinate
transformation.

3. Problem formulation

Assume the BCN (1) is disturbed by some disturbance inputs.
Then its dynamics becomesxi(t + 1) = fi(u1(t), . . . , um(t), x1(t), . . . , xn(t),

ξ1(t), . . . , ξq(t)), i = 1, . . . , n,
yj(t) = hj(x1(t), . . . , xn(t)), j = 1, . . . , p,

(3)

where ξi(t), i = 1, . . . , q are the disturbances. Roughly speaking,
the DDP is to find suitable controllers such that the outputs of the
closed-loop system are not affected by the disturbances.

Definition 4. Consider system (3). The DDP is solvable, if we can
find a coordinate transformation {xi | i = 1, . . . , n} → {zi | i =

1, . . . , n} and feedback controls

ui(t) = Φi(z1(t), . . . , zn(t)), i = 1, . . . ,m, (4)

such that the closed-loop system becomes
zi(t + 1) = F 1

i (z1(t), . . . , zr(t)), i = 1, . . . , r,
zk(t + 1) = F 2

k (z1(t), . . . , zn(t), ξ1(t), . . . , ξq(t)),
k = r + 1, . . . , n,

yj(t) = Hj(z1(t), . . . , zr(t)), j = 1, . . . , p.

(5)
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