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a b s t r a c t

This paper presents a recursive method to design state and output feedback controllers for MIMO, block-
feedforward linear systems with delays in the inputs, outputs, and interconnections between the blocks.
The resulting controller is of predictor-type, which means that it contains finite integrals over past state
and input values. Themethod is a generalization of thewell-knownmodel reduction approach for systems
with input delay. A recursive procedure replaces delay terms with non-delay ones step by step, from the
top of the cascade structure down. Controller gains are computed for the proxy system without delays,
while the construction guarantees the same closed loop poles for the delay system and the proxy one.
The observer is designed by applying the duality argument and the separation principle is also shown to
apply.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we develop a recursive method to design con-
trollers for linear, block-feedforward systems with input, output,
and state delays. Themethod is a generalization of thewell-known
approach to control systems with input, but no state delay of the
form

ẋ(t) = Ax(t)+
l∑
i=0

Biu(t − τi) (1.1)

where x ∈ Rn and u ∈ Rm. This problem can be reduced to control
design for a system without delay,

ẋ(t) = Ax(t)+ Bdu(t), Bd =
l∑
i=0

e−AτiBi. (1.2)

The feedback controller u = −Kx for (1.2) can now be obtained by
a control designmethod of choice, assuming that the pair (A, Bd) is
stabilizable. The fact that the spectrum of A − BdK coincides with
that of (1.1) with the control

u(t) = −K

(
x(t)+

l∑
i=0

∫ τi

0
e−AθBiu(t + θ − τi)dθ

)
(1.3)
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that motivated the main result of this paper and an anonymous reviewer for
pointing out connections to several related results.
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provides the stabilizing feedback for (1.1) and a finite spectrum
assignment for the closed loop system (see Manitius and Olbrot
(1979)). Thismethod applies even if there is a distributed delay in u
and/or thematrices A and Bi are time varying (Artstein, 1982;Man-
itius & Olbrot, 1979). Note that when there is only one delay τ , a
simplemanipulation shows that u(t) = −KAx̂(t+τ |t), whereKA =
Ke−Aτ and x̂(t+τ |t) is the predicted value of the state x at time t+
τ , based on the information up to time t (values of u applied after t
do not impact x(t + τ) because of the input delay). For this reason,
the control law of the form (1.3) is often referred to as ‘‘predictor-
like’’ or ‘‘predictor-type’’ while the method is known as the model
reduction (see Gu and Niculescu (2003), Section 4.2 and the ref-
erences therein). We note that multiple-delays and multiple-
inputs are completely transparent from the control design point
of view.
The model reduction technique does not work if state delay is

also present. Indeed, finite spectrum assignment (FSA) methods
for systems that include state delays follow different approaches
(see, for example, Loiseau (2000), Manitius and Olbrot (1979) and
Watanabe, Nobuyama, Kitamori, and Ito (1992)). The FSA designs
are progressively more complex for systems with multiple-inputs
and multiple-delays (depending on the ratio of the delays) and
stop working if the delays are non-commensurate. In this paper
we apply a model reduction like method to a class of systems with
state, input, and output delays, which may be non-commensurate,
under a structural constraint on the system. That is, we con-
sider MIMO systems having the following block-feedforward
structure:
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ż =


A1 ∗ ∗ . . . ∗
0 A2 ∗ . . . ∗
0 0 A3 . . . ∗
...

...
...

0 0 0 . . . Ap

 z +

∗

∗

∗

...
∗

 u
y =

[
∗ ∗ ∗ . . . ∗

]
z

(1.4)

where z ∈ Rn, n = n1 + · · · + np, u ∈ Rm, and y ∈ Rr .
The entries ‘‘∗’’ designate delayed terms. In other words, if we
denote delay operators by µi (that is, µiz(t) = z(t − τi), i =
0, . . . , l),1 a ‘‘∗’’ in (1.4) denotes a term of the form

∑l
i=0 Siµi

for some matrices Si of appropriate dimensions. Just like the
model reduction method, our generalized predictor imposes no
restrictions on the delays τi. It would also work for distributed
delays, but, to reduce notational complexity, only discrete delays
are considered. The recent Lyapunov based result, the cross-term
forwarding of Jankovic (2009), applies to feedforward linear and
nonlinear systems with the same structure as (1.4), but does not
allowmatricesAi to haveunstablemodes. It is also computationally
more complex. Another method that uses a transformation into
a non-delay system, proposed in Fiagbedzi and Pearson (1990), is
based on eigenvalues and eigenvectors of the characteristic quasi-
polynomial matrix. For the system (1.4) it would provide a control
law that places the complete set of eigenvalues at prescribed
locations. The recursive method proposed here does not use the
system eigenstructure, but, as pointed out by a reviewer, it does
implicitly solve the characteristic matrix equation for (1.4). In
doing so, the method avoids certain complexity and additional
assumptions associated with repeated eigenvalues and related
Jordan forms (see Fiagbedzi (1996), Fiagbedzi and Pearson (1990)
and Zheng, Cheng, and Gao (1994)).
We first consider the control design for (1.4) assuming the full

state is available for feedback. For this, we propose a recursive
method, based on the single step spectral equivalence result
(observation) from Jankovic (2009). The result is reinterpretedhere
in a form that allows removal of delays from subsystems that
grow larger at each recursion step. The delays are replaced by a
matrix exponent factor in a fashion similar to the model reduction
technique. Thematrix exponent at each stepdepends on thematrix
exponents from previous steps. After p steps, all the delays will
have been removed and a ‘‘proxy’’ non-delay system obtained. A
controller for the proxy system can be designed using one of the
standard techniques (pole placement, LQR, H∞, etc). The spectra
for the original delay system and the delay-free proxy system are
made the same by augmenting the proxy controller with predictor
integrals similar to those in (1.3). Certain robustness properties of
the delay and the proxy systems turned out to be equivalent as
shown in Remark 3 and Section 5.
An asymptotic observer that provides state estimates for (1.4)

is designed using the duality argument. As a result, the state
estimation error is governed by an infinite dimensional system that
has a finite spectrum. The separation principle is shown to apply
as well. That is, when the estimated states are used instead of the
actual ones in the feedback law, the closed loop system remains
stable and the closed loop spectrum is the sum of the spectra for
the observer and the full state feedback system.
The paper is organized as follows. Section 2 provides the

spectral equivalence result that will be used in the recursive
method. The recursive predictor controller design is presented
in Section 3. Section 4 contains the observer design and
the separation principle. Section 5 contains an example with
simulation results.

1 We shall use µ = (µ0, µ1, . . . , µp) and also apply the same notations in the
(Laplace) s-domain with µi = e−sτi .

2. Spectral equivalence result

The method proposed in this paper is based on a result
(observation) from Jankovic (2009), which itself is a version of the
result from Section IV of Manitius and Olbrot (1979). In its original
form the result applies to linear systems of the form

ẋ(t) = Fx(t)+
l∑
i=0

Hiξ(t − τi)

ξ̇ (t) = Aξ(t)+ Bu(t)

(2.1)

where x ∈ Rnx , ξ ∈ Rnξ , u ∈ Rm and 0 = τ0 < τ1 < · · · < τl.
In Jankovic (2009) it was shown that any stabilizing control v0 =
−Kxx− Kξ ξ for the cascade system with no delay

ẋ = Fx+
l∑
0

e−FτiHiξ

ξ̇ = Aξ + Bv0

(2.2)

provides a control law

u = −Kξ ξ − Kx

(
x+

l∑
i=0

∫ τi

0
e−FθHiξ(t + θ − τi)dθ

)
(2.3)

that stabilizes (2.1). Moreover, the two systems – (2.2) with the
control v0 and (2.1) with the control (2.3) – have the same closed
loop poles.
For this paper we need the result extended to the class of

systems

ẋ(t) = Fx(t)+
l∑
i=0

Hiξ(t − τi)

ξ̇ (t) = Aξd(t)+ Bu(t)

(2.4)

whereA is a linear functional acting on the present and past values
of ξ (ξd(t) denotes the state trajectory over the interval [t − r, t]
for some r ≥ τl) of the form

Aξd(t) =
l∑
i=0

Aiξ(t − τi)+
∫ r

0
Q (θ)ξ(t − θ)dθ.

The control law we consider is also modified — instead of the
simple gain matrix Kξ in (2.3) we employ a functional Kξ having
the same form asA:

Kξ ξd(t) =
l∑
i=0

Kξ iξ(t − τi)+
∫ r

0
Υξ (θ)ξ(t − θ)dθ.

With these changes, the closed loop system takes the form

ẋ(t) = Fx(t)+
l∑
i=0

Hiξ(t − τi)

ξ̇ (t) = −BKx

(
x(t)+

l∑
i=0

∫ τi

0
e−FθHiξ(t + θ − τi)dθ

)
+ (A− BKξ )ξd(t).

(2.5)

With the Laplace transform of
∫ τi
0 e
−FθHiξ(t + θ − τi)dθ given by

(sI−F)−1(e−Fτi−e−sτi I)Hiξ(s), the characteristic quasi-polynomial
of (2.5) is

χ(s) = det


sI − F −

l∑
0

Hie−sτi

BKx

sI −A(s)+ BKξ (s)+ BKx

× (sI − F)−1
l∑
0

(e−Fτi − e−sτi I)Hi

 (2.6)
where A(s) =

∑l
0 Aie

−τis +
∫ r
0 Q (θ)e

−sθdθ and Kξ (s) =∑l
0 Kξ ie

−τis +
∫ r
0 Υξ (θ)e

−sθdθ . Using the well-known identity for
determinants of block matrices
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