Accepted Manuscript

Title: Removal of alachlor, diuron and isoproturon in water in a falling film dielectric barrier discharge (DBD) reactor combined with adsorption on activated carbon textile: Reaction mechanisms and oxidation by-products

Authors: Patrick Vanraes, Niels Wardenier, Pieter Surmont, Frederic Lynen, Anton Nikiforov, Stijn W.H. Van Hulle, Christophe Leys, Annemie Bogaerts

PII: S0304-3894(18)30346-7

DOI: https://doi.org/10.1016/j.jhazmat.2018.05.007

Reference: HAZMAT 19373

To appear in: Journal of Hazardous Materials

Received date: 30-10-2017 Revised date: 29-4-2018 Accepted date: 2-5-2018

Please cite this article as: Vanraes P, Wardenier N, Surmont P, Lynen F, Nikiforov A, Van Hulle SWH, Leys C, Bogaerts A, Removal of alachlor, diuron and isoproturon in water in a falling film dielectric barrier discharge (DBD) reactor combined with adsorption on activated carbon textile: Reaction mechanisms and oxidation by-products, *Journal of Hazardous Materials* (2010), https://doi.org/10.1016/j.jhazmat.2018.05.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Removal of alachlor, diuron and isoproturon in water in a falling film dielectric barrier discharge (DBD) reactor combined with adsorption on activated carbon textile: Reaction mechanisms and oxidation by-products

Patrick Vanraes^{1,2,*}, Niels Wardenier^{2,3}, Pieter Surmont⁴, Frederic Lynen⁴, Anton Nikiforov², Stijn W. H. Van Hulle³, Christophe Leys², Annemie Bogaerts¹

¹ PLASMANT, Department of Chemistry, University of Antwerp Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium

² RUPT, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium

³LIWET, Department of Industrial Biological Sciences, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk,

Belgium

⁴ Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, 9000 Gent,

Belgium

* Corresponding author. tel: +3232652364; fax: +3232652343; email: patrick.vanraes@uantwerpen.be; address: PLASMANT, Department of Chemistry, University of Antwerp Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium

E-mail addresses: Patrick. Vanraes@uantwerpen.be (P. Vanraes); Niels. Wardenier@ugent.be (N. Wardenier); Pieter. Surmont@ugent.be (P. Surmont); Frederic. Lynen@ugent.be (F. Lynen); Anton. Nikiforov@ugent.be (A. Nikiforov); Stijn. Van Hulle@ugent.be (S.W.H. Van Hulle); Christophe. Leys@ugent.be (C. Leys); Annemie. Bogaerts@uantwerpen.be (A. Bogaerts).

Highlights

- Oxidation pathways are investigated in a novel water treatment plasma reactor.
- By-products of pesticides are identified from their fragmentation in HPLC-TOF-MS.
- Nitrification is one of the five main oxidation steps under air plasma.
- Nitrification is dominant for diuron and isoproturon but subordinate for alachlor.
- Oxidation of the aromatic ring as well as of the side chains is observed.

Abstract

A falling film dielectric barrier discharge (DBD) plasma reactor combined with adsorption on activated carbon textile material was optimized to minimize the formation of hazardous oxidation by-products from the treatment of persistent pesticides

Download English Version:

https://daneshyari.com/en/article/6968384

Download Persian Version:

https://daneshyari.com/article/6968384

<u>Daneshyari.com</u>