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The central pattern generator (CPG) is a nonlinear oscillator formed by a group of neurons, providing a
fundamental control mechanism underlying rhythmic movements in animal locomotion. We consider a
class of CPGs modeled by a set of interconnected identical neurons. Based on the idea of multivariable
harmonic balance, we show how the oscillation profile is related to the connectivity matrix that specifies
the architecture and strengths of the interconnections. Specifically, the frequency, amplitudes, and phases

are essentially encoded in terms of a pair of eigenvalue and eigenvector. This basic principle is used to
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estimate the oscillation profile of a given CPG model. Moreover, a systematic method is proposed for
designing a CPG-based nonlinear oscillator that achieves a prescribed oscillation profile.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Rhythmic movements in animal locomotion are controlled by
a neuronal circuit called the central pattern generator (CPG). A
CPG is a group of neurons interconnected in a specific manner
so that their membrane potentials autonomously oscillate with
particular phase relations, generating a “pattern” to be used for
muscle activation. To uncover the biological control mechanism,
CPGs have been extensively studied in the neuroscience litera-
ture (Cohen, Rossignol, & Grillner, 1988; Orlovsky, Deliagina, &
Grillner, 1999). Individual neurons participating rhythmic pattern
generation have been identified and their connections determined
from physiological experiments. The knowledge on the mechanism
of CPGs thus generated has been utilized in engineering applica-
tions. For instance, the basic architectures of CPGs are exploited in
robotics literature to design feedback controllers that achieve sta-
ble limit cycles with desired phase coordination properties (Crepsi,
Badertscher, Guignard, & Ijspeert, 2005; Fukuoka, Kimura, & Cohen,
2003). A CPG with sensory feedback may have a potential to pro-
vide a new paradigm for nonlinear control theory and applications
where the control objective is to achieve robust and adaptable os-
cillations.

Various theoretical analysis methods for CPGs, or nonlinear
oscillators in general, have been developed in the literature,
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including the Poincaré-Bendixson theorem (Khalil, 1996), Hopf
bifurcation theorem (Marsden & McCracken, 1976), perturbation
theory and averaging (Guckenheimer & Holmes, 1983), integral
quadratic constraints (Jonsson, Kao, & Megretski, 2002), and the
Malkin theorem for phase coupled oscillators (Izhikevich, 2006).
Most of these results are effective for analysis of dynamical
systems, but not directly useful for the problem of our interest
— design of (artificial) CPGs to achieve oscillations with a desired
profile (frequency, amplitudes, and phases). A rigorous theoretical
result has been obtained by Lohmiller and Slotine (1998) using
contraction analysis for global convergence, but for a slightly
different problem — design of coupled oscillators to achieve
prescribed phases (Pham & Slotine, 2007).

The objective of this paper is to develop a systematic method
for the analysis and synthesis of CPGs. We consider the class
of CPGs modeled by a group of identical neuron models. The
analysis problem addressed here is to determine whether there
is a stable oscillatory trajectory, and if so, predict the oscillation
profile. The synthesis problem is to determine appropriate
neuronal connections so that the resulting circuit achieves a stable
oscillation with a prescribed profile. Our main result shows that
the oscillation frequency and overall amplitude are encoded in the
“maximal” eigenvalue, while the relative amplitudes and phase
information are embedded in the corresponding eigenvector. Thus,
both analysis and synthesis of CPGs are essentially reduced to
simple eigenvalue problems.

The approach we employed to arrive at these results is
the multivariable harmonic balance. The harmonic balance is a
classical technique that detects the presence and estimates the
profile of oscillations, provided that the shape of the oscillatory
signal is close to a sinusoid (Khalil, 1996; Mees, 1981). The method
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has been applied in various engineering fields, including control
designs (Berns, Moiola, & Chen, 1998; Tesi, Abed, Genesio, & Wang,
1996), but these results focus on the amplitudes and frequency
of oscillations. On the other hand, our focus here is the pattern
generation and hence the phase is the most important property
of oscillation. To our knowledge, the potential of the harmonic
balance idea has not been fully explored in the context of CPG
analysis and synthesis. The method is approximate in nature
but numerous examples demonstrate that our method works
reasonably well for CPGs.

We use the following notation. For a matrix M € C™", let
p(M) € C be the eigenvalue of M with the largest imaginary part
among those eigenvalues with the largest real part. We call p(M)
the maximal eigenvalue. Let Mt be the Moore-Penrose inverse of
M. Denote by U the set of vectors u € C" such that |u;| = 1 for all
i=1,...,n

2. The CPG model and problem formulation

Let the electrical activity of a neuron be modeled by the
dynamical mapping from input u to output v:

v=yY(q), q=f(@)u

where v is a static nonlinear function and f(s) is a transfer
function. The output v is either the cell membrane potential of
the neuron or the spike frequency of the membrane potential.
The input u is taken as the weighted sum of the output of the
presynaptic neurons. The nonlinear function ¥ (q) captures the
threshold and saturation properties. The transfer function f(s)
represents the linear time-invariant part of the neuronal dynamics.
Typical choices for f (s) include

[OR (w1 + wy)s
s) = , )= — —"—, 1
fa(s) St fo(5) G tonGto) (M
where w; > 0 withi = o, 1, 2. The former f,(s) is a low-pass

filter representing the cell membrane time constant 1/w,, and is
one of the simplest and standard choices in many engineering
applications of neural network (Hunt, Sbarbaro, Zbikowski, &
Gawthrop, 1992). The latter f;(s) is a band-pass filter with pass
band w; < w < w,, capturing the adaptation property (impulse
adaptation and/or synaptic fatigue) in addition to the time lag. The
adaptation is known to be important in the pattern generation of
certain CPGs (Futakata & Iwasaki, 2008; Iwasaki & Zheng, 2006;
Matsuoka, 1985).

A CPG is a group of neurons interconnected in a specific
manner to generate a desired phase pattern. Let us consider a CPG
consisting of n neurons where the dynamical behavior of the ith
neuron is described by

vi = ¥i(qi), qi = fi(®)u, U = Z Wi ($)vj
=

where w;i(s) is the transfer function of the synaptic connection
from the jth neuron. If w;(0) is negative/positive, then the
connection is said to be inhibitory/excitatory. In the vector form,
the CPG can be written

v=U(q), q=MES)¥(Q) (2)
v = diag(yy), F(s) := diag(fi(s)), 3)
M(S) := F(s)M(s),

where M(s) is the transfer matrix whose (i, j) entry is p;j(s). We
consider the following.

Assumption 1. The CPG described by (2) and (3) consists of
identical neurons with static interconnections:

M(s) = M, v =yl
F(s) =f (), [f(s) = fa(s) or fy(s),

where I is the n x n identity matrix, the second equation means
that the ith entry of ¥ (q) is ¥ (g;), and f;(s) and f,(s) are defined
in (1) with positive real parameters w,, w1, and w,. Moreover, the
nonlinear function 1 (x) is continuous, monotonically increasing,
bounded, odd, strictly concave on x > 0, and has a unity slope at
the origin.

(4)

We will propose a method for analyzing the general CPG model
in the next section, and then apply the method to the special case
under Assumption 1 in the sections that follow. The hyperbolic
tangent function ¥ (x) := tanh(x) satisfies the properties indicated
in Assumption 1, and will be used for all numerical examples
presented later.

In this paper, we will address the following:

Analysis Problem: Determine whether the CPG in (2) has an
oscillatory trajectory, and if so, estimate the oscillation profile
(frequency, amplitudes, phase) without actually simulating the
differential equations.

Synthesis Problem: Given a desired oscillation profile, find the
connectivity matrix M in (2) so that the resulting CPG achieves
the profile.

Modeling Problem: Given an observed oscillation profile, find
the connectivity matrix M in (2) so that the resulting CPG
exhibits the profile.

The behavior of a CPG can be analyzed by simulations, but a
solution to the analysis problem can be more advantageous in
certain aspects. First, it could save time for analysis, especially
when the CPG consists of a large number of neurons and its
simulation is time consuming. More importantly, theoretical
analysis would provide more insights into the pattern generation
mechanism; for instance, it would uncover how the neuronal
interconnection structure relates to the resulting phase relations.
Such result would be useful in neuroscience for understanding
the biological control mechanism. The synthesis problem is of
importance for engineering applications where artificial CPGs are
used to control robotic locomotion systems, whereas the modeling
problem is important in neuroscience to understand the neuronal
mechanism for generating a particular oscillation pattern. The
synthesis and modeling problems are mathematically equivalent
and hence we discuss the former only.

3. General framework

In this section, we consider the class of systems described
by a feedback connection of general transfer function M(s) and
nonlinear function ¥ as in (2). Throughout this section, M(s) is
an arbitrary stable transfer function matrix of dimension n x n
unless otherwise noted, and ¥ is a diagonal nonlinearity with ;
on the ith diagonal, where ; satisfies the properties imposed on
¥ in Assumption 1. We will first discuss a method for estimating
the profile of oscillation, assuming existence of a periodic orbit.
We will then provide a condition for the existence of an oscillatory
trajectory.

3.1. Multivariable harmonic balance

We shall develop a multivariable harmonic balance (MHB)
equation to characterize the profile of oscillation for (2). The
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