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A B S T R A C T

Large-scale application of ionic liquids (ILs) hinges on the advancement of designable and eco-friendly nature.
Research of the potential toxicity of ILs towards different organisms and trophic levels is insufficient.
Quantitative structure-activity relationships (QSAR) model is applied to evaluate the toxicity of ILs towards the
leukemia rat cell line (ICP-81). The structures of 57 cations and 21 anions were optimized by quantum chem-
istry. The electrostatic potential surface area (SEP) and charge distribution area (Sσ-profile) descriptors are cal-
culated and used to predict the toxicity of ILs. The performance and predictive aptitude of extreme learning
machine (ELM) model are analyzed and compared with those of multiple linear regression (MLR) and support
vector machine (SVM) models. The highest R2 and the lowest AARD% and RMSE of the training set, test set and
total set for the ELM are observed, which validates the superior performance of the ELM than that of obtained by
the MLR and SVM. The applicability domain of the model is assessed by the Williams plot.

1. Introduction

Ionic liquids (ILs) have been considered as the environmentally
friendly materials based on the principles of green engineering [1].
Intensive research interests on ILs were given to develop their potential
applications in many areas, such as gas capture and separation [2–6],
organic synthesis [7–9], electrochemical reaction [10–12], catalysis
modification [13–16], and so on. However, the properties of ILs, such as
thermal stability and non-volatility [17], might pose environmental
threats due to their nature of slow degradation. In the context of mass
commercialization, the toxic evaluation of perceived environmentally
friendly ILs has aroused broad attention except for their physical
properties. It is now realized that the previously acknowledged notion
of low toxicity for ILs has been proved to be inaccurate and to some
extent ILs have hazard potentials for the human being and the en-
vironment [18]. It is reported that there is a direct relationship between
the toxicity of ILs and their hydrophobicity [19]. For example, the re-
lease of ILs from different industrial processes into environments will

cause water contamination [20]. Docherty et al. stated that studies of
toxicity testing of ILs will definitely offer insights for engineers on
tailoring IL-synthesis to particular industrial processes, instead of re-
leasing harmful compounds to the environment [21]. Therefore, it is
imperative to evaluate the toxic effects of ILs and determine their fur-
ther consequences to the environmental fate.

Since the work of Jastorff et al. in 2000 [22], many attempts were
extensively devoted to understanding and identifying the toxicity of the
ILs [20,21,23–25]. Romero and co-workers determined the acute toxi-
city and EC50 values of each compound in the aqueous solution using
the Microtox® standard procedure. Their results showed that the short
chain length of side chain R2 on imidazolium cation is positive to the
low toxic effect, while the anion has a minor effect on the toxicity of ILs
[26]. To better understand the toxic influence of anion, Pereira et al.
presented their toxicological assessment of a group of environmentally
friendly ILs with the benign cholinium cation and linear alkanoate
anions, using filamentous fungi as model eukaryotic organisms [20].
They found that 1) toxicity of ILs increase with the elongation of the

https://doi.org/10.1016/j.jhazmat.2018.03.025
Received 1 November 2017; Received in revised form 2 March 2018; Accepted 14 March 2018

⁎ Corresponding author at: Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University,
Shanghai, 200240, China.

⁎⁎ Corresponding author at: Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou, Henan, 450001, China.

1 These authors contributed equally.
E-mail addresses: yzhao01@ucsb.edu (Y. Zhao), zjh@zzuli.edu.cn (J. Zhao).

Journal of Hazardous Materials 352 (2018) 17–26

Available online 15 March 2018
0304-3894/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03043894
https://www.elsevier.com/locate/jhazmat
https://doi.org/10.1016/j.jhazmat.2018.03.025
https://doi.org/10.1016/j.jhazmat.2018.03.025
mailto:yzhao01@ucsb.edu
mailto:zjh@zzuli.edu.cn
https://doi.org/10.1016/j.jhazmat.2018.03.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhazmat.2018.03.025&domain=pdf


linear chain in the anion, which is the similar conclusion drawn by Lima
and Coutinho [27]; 2) branching resulted in lower toxicity because it
usually depresses lipophilicity [20]. At multiple levels, Wang et al. in-
vestigated the interactions of fullerene C60 with imidazolium-based ILs
with different alkyl side chain lengths and anionic types [28,29]. Their
results showed that π-cation interaction contributed to the mechanism
of the C60-IL interaction more than π-anion interaction. Wang et al.
also predicted the joint toxicity effects in the green alga Scenedesmus
obliquus exposed to binary mixtures of intrinsic graphene (iG)/gra-
phene oxide (GO) and five ILs. They found that the isolated ILs in the
binary mixtures were the main contributors to toxicity. They believed
that the mechanism of the joint toxicity may be associated with the
adsorption capability of the graphenes for the ILs, the dispersion sta-
bility of the graphenes in aquatic media, and modulation of the binary
mixtures-induced oxidative stress [30]. Quantitative structure-property
relationships (QSPR) or quantitative structure-activity relationships
(QSAR) studies have already been used in correlation and prediction of
properties [24,31–35]. Zhang’s group established a comprehensive
database on the toxicity of ILs up to 4000 pieces and then used QSAR
model to qualitatively analyze the relationship between the structure
and toxicity of ILs [25]. They proposed that the nonlinear model de-
veloped by supported vector machine (SVM) algorithm is more reliable
in the prediction of toxicity of ILs, which will be meaningful in de-
signing novel environmentally benign agents. Singh et al. studied the
chemical attributes of a wide variety of ILs towards their inhibitory
potential of acetyl cholinesterase enzyme (AChE) using SVM and cas-
cade correlation network (CCN) [36]. Their results showed that pro-
posed QSAR models bear more statistical confidence, especially with
respect to external validation which has not been focused on in other
studies. This work successfully proposed QSAR in predicting different
toxicity classes and precise toxicity end-point of ILs.

It is noted that the above-mentioned algorithms are still insufficient,
and therefore, more advanced models should be developed.
Additionally, it is proved that molecular descriptors play vital roles in
building models [37]. The distribution area of the σ-profile (Sσ-profile)
has been considered as an a priori quantum-chemical descriptor that
quantitatively represents the molecule’s polar surface screen charge on
the polarity scale and it can be achieved from the histogram function σ-
profile given by COSMO computation [38]. It has been effectively used
as a parameter in QSAR models to predict the toxicity [39] and viscosity
[38] of ILs, and the advantages have been proved. The electrostatic
potential surface for molecules, which means the molecular surface
areas in the interval of different electrostatic potential, has the ability to
show the rich information at electron level and therefore it is expected
to be used as descriptors for predicting properties of materials. There-
fore, the above-mentioned two kinds of descriptors have been utilized
as parameters to build models. Herein, we hope to build models using
electrostatic potential surface area (SEP) and the Sσ-profile calculated
based on quantum chemistry as the input parameters, combined with a
novel algorithm, namely, extreme learning machine (ELM). First, the
ELM was employed to predict the toxicity of ILs towards leukemia rat
cell line (IPC-81) using the calculated descriptors. Then the results were
compared with those of different QSAR models, including SVM and
MLR. Our work establishes a platform offering insights on the limited
information of a huge number of ILs and assessment of the environ-
mental impact.

2. Methodology and database

2.1. Dataset and structural descriptors

In this work, toxicity data set of 119 ILs for IPC-81 (EC50 values) was
chosen from the widely acknowledged ILs database [40,41]. The
structures of 119 ILs (57 cations and 21 anions) were geometrically
optimized by the Gaussian 09 software B.01 at the theoretical level of
B3LYP/6-31++G(d, p) and specially LanL2DZ was used for I− ion

[42]. The optimized results were listed in Table S1-2. EC50 values (μM)
for IPC-81 are converted into the form of the logarithm of half maximal
effective concentration, written as log10(EC50). The whole data set is
divided into two parts: a training set of 80% ILs to build the model and
a set of the remaining of 20% ILs to evaluate the model’s prediction
ability. Namely, the compounds numbered from 1 to 99 belong to the
training set and the remaining compounds numbered from 100 to 119
are test set. Each category of the total data is separated by random
selection. Usually, the related compound is represented by theoretic
molecular descriptors. The choice of descriptors is of vital significance
to the performance of predictive models. In this work, two kinds of
descriptors: SEP and Sσ-profile are applied to develop the models. Herein,
SEP and Sσ-profile are calculated by different programs based on the op-
timal structures of cations and anions. The electrostatic potential V(r) is
produced at the point r around a molecule, via its nuclear and electrons,
i.e. it is calculated via the static distribution of a molecule [43]. The
molecular electrostatic potential is expressed rigorously by Eq. (1)
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where ZA denotes the charge of the nuclear A, located at rA, −r r| |A

stands for the distance between nucleus A and r, ρ r( ) represents the
electronic density function for the molecule, ′ ′ρ r dr( ) represents the
electronic charge increment in each volume element and ′ −r r| | is its
distance from r. As can be seen from the Eq. (1), the electrostatic po-
tential is composed of two parts, atomic charge and electron density
contribution. First, the SEP files of the corresponding cations and anions
were calculated using the Mutiwfn software with the electrostatic po-
tential range of 0–150 kcal/mol for cations, −150 to 0 kcal/mol for
anions [44]. Second, the COSMO files of cations and anions were cal-
culated using Gaussian 03 software [45] based on the structures opti-
mized by Gaussian 09. Third, the Sσ-profile files of the corresponding
cations and anions were calculated by a MATLAB code. Each σ-profile
ranges from −0.03 to 0.03 e/Å2 and the step size is 0.001 e/Å2. For
convenience, we used the intermediate value to stand for the SEP of
each step, for instance, SEP0.25 represents the electrostatic potential
surface areas in the range of 0–0.5 kcal/mol. Specifically, we take ca-
tion 1-(cyanomethyl)-1-methylpiperidinium and anion 2-(2-methox-
yethoxy)ethylsulfate as examples to show the representative SEP and Sσ-
profile in this work, as seen in Figs. 1 and 2, respectively. It can be seen
from Fig. 1 that the darker color in blue for cation 1-(cyanomethyl)-1-
methylpiperidinium or red for anion 2-(2-methoxyethoxy)ethylsulfate
means the much stronger polarity. The similar situation can be found
for distribution area of the σ-profile as revealed in Fig. 2.

Fig. 1. SEP of a representative cation and anion of IL.
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