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a b s t r a c t

This paper provides improved delay-dependent stability criteria for systems with a delay varying in a
range. The criteria improve over some previous ones in that they have fewer matrix variables yet less
conservatism, which is established theoretically. An example is given to show the advantages of the
proposed results.
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1. Introduction

Time delays are often encountered in various practical systems
such as chemical processes, neural networks and long transmission
lines in pneumatic systems (Hale, 1977; Richard, 2003; Shao,
2008a,b,c). It has been shown that the existence of time-delays
may lead to oscillation, divergence or instability. This motivates
the stability analysis problem for linear systems affected by
time delays. Stability criteria for the system can be divided
into two classes; that is, delay-independent ones and delay-
dependent ones. Since delay-independent criteria tend to be
more conservative especially for small size delays, considerable
attention has been devoted to delay-dependent ones, see, e.g., Kim
(2001), Lee, Moon, Kwon, and Park (2004), Niculescu, Neto, Dion,
and Dugard (1995), Suplin, Fridman, and Shaked (2004), Wu, He,
She, and Liu (2004) and Xu and Lam (2005).
As far as delay-dependent stability is concerned, there are

roughly two approaches, namely the frequency-domain one and
the time-domain one. The former can be found in Ebenbauer
and Allgöwer (2006) where the sum of squares (SOS) technique
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was taken. As to the time-domain approach, Lyapunov functional
is a powerful tool, which can deal with time-varying delays. A
Lyapunov functional was constructed in Xie and de Souza (1997)
based on the transformed model, and an inequality was proposed
in Park (1999) or Moon, Park, Kwon, and Lee (2001) for bounding
cross terms in the derivative of Lyapunov functional. The descriptor
system approach together with Park’s inequality in Fridman and
Shaked (2002) resulted in a less conservative criterion. For the case
of constant delay, even less conservative results were obtained
in Gu (2000) by constructing a complete Lyapunov functional
with discretized or piecewise methods. The complete Lyapunov
functional is sufficient and necessary to the stability for time-
invariant linear systems with a constant delay. Recently it was
extended to interval time-varying delay.
Delay-dependent stability for systems with interval time-

varying delay has been addressed and some stability results
reported recently in the literature. In Han and Gu (2001),
motivated by the complete Lyapunov functional for time-invariant
delay, a more general one was introduced and discretized. The
stability criterion derived is less conservative at the cost of more
computation. Especially for constant delay it allows a stability
bound approach the analytical solution as the discretization
becomes finer. But it is only workable when the rate of delay
is less than one. Papachristodoulou, Peet, and Niculescu (2007)
extended the complete Lyapunov functional from constant delay
to interval time-varying delay. They specialized function matrices
as the sum of squares of polynomials, and obtained a stability
condition. The stability result becomes less conservative as the
order of the polynomials goes higher. But this means a greater
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computational requirement. Moreover, the stability result is not
applicable to the case when the rate of delay is unknown. A simple
stability criterion, however, can be found for this case in Kao and
Lincoln (2004), where an input–output approach was employed.
Unfortunately the simple criterion is only suitable for single-
input–single-output control systems, and when the rate of delay
is available it is conservative. The free weighting matrix method,
by contrast, can keep a balance between the conservatism and the
computational effort; see Jiang and Han (2005) and He, Wang, Lin,
and Wu (2007). However there is still some conservatism in He
et al. (2007), and the criteria can be simplified.
In this paper attention is focused on delay-dependent stability

for systems with a delay varying in an interval. Via a different
Lyapunov functional whose derivative is estimated using Jensen’
Inequality, delay-dependent stability criteria are obtained. More
importantly it is established theoretically that the criteria have
less conservatism with fewer matrix variables than those in He
et al. (2007). This implies that the latter can be simplified with less
conservatism.
Consider the following system with a time-varying delay.

ẋ(t) = Ax(t)+ A1x(t − d(t)), (1)
x(t) = φ(t), t ∈ [−h2, 0],

where x(t) is the state;A and A1 are known real constant matrices;
the time delay d(t) is a continuous time-varying function satisfying

0 ≤ h1 ≤ d(t) ≤ h2, (2)

ḋ(t) ≤ µ; (3)

φ(t) is a continuous real-valued initial function on [−h2, 0].

2. Main results

Now we provide a delay-dependent stability criterion for
system (1).

Theorem 1. System (1) subject to (2) and (3) is asymptotically stable
for given 0 ≤ h1 ≤ h2 and µ if there exist matrices P > 0,
Qi > 0, i = 1, 2, 3 and Zj > 0, j = 1, 2, such that the following
LMI holds
Υ PA1 Z1 0 h1ATZ1 h12ATZ2
∗ −(1− µ)Q3 − 2Z2 Z2 Z2 h1AT1Z1 h12A

T
1Z2

∗ ∗ −Q1 − Z1 − Z2 0 0 0
∗ ∗ ∗ −Q2 − Z2 0 0
∗ ∗ ∗ ∗ −Z1 0
∗ ∗ ∗ ∗ ∗ −Z2


< 0 (4)

where h12 = h2 − h1, and

Υ = PA+ ATP + Q1 + Q2 + Q3 − Z1.

Proof. Define a Lyapunov functional as

V (xt) = x(t)TPx(t)+
∫ t

t−d(t)
x(α)TQ3x(α)dα

+

2∑
i=1

∫ t

t−hi
x(α)TQix(α)dα

+

∫ 0

−h1

∫ t

t+s
h1ẋ(α)TZ1ẋ(α)dαds

+

∫
−h1

−h2

∫ t

t+s
h12ẋ(α)TZ2ẋ(α)dαds, (5)

where xt = x(t + θ),−2h2 ≤ θ ≤ 0. Then along the trajectory of
(1) we have

V̇ (xt) ≤ 2x(t)TP(Ax(t)+ A1x(t − d(t)))+
3∑
i=1

x(t)TQix(t)

− (1− µ)x(t − d(t))TQ3x(t − d(t))

−

2∑
i=1

x(t − hi)TQix(t − hi)+ (Ax(t)+ A1x(t − d(t)))T

× (h21Z1 + h
2
12Z2)(Ax(t)+ A1x(t − d(t)))

−

∫ t

t−h1
h1ẋ(α)TZ1ẋ(α)dα −

∫ t−h1

t−h2
h12ẋ(α)TZ2ẋ(α)dα.

(6)

From Jensen’s Inequality, it follows that

−

∫ t

t−h1
h1ẋ(α)TZ1ẋ(α)dα

≤ −(x(t)− x(t − h1))TZ1(x(t)− x(t − h1)), (7)

and

−

∫ t−h1

t−h2
h12ẋ(α)TZ2ẋ(α)dα

≤ −

∫ t−d(t)

t−h2
(h2 − d(t))ẋ(α)TZ2ẋ(α)dα

−

∫ t−h1

t−d(t)
(d(t)− h1)ẋ(α)TZ2ẋ(α)dα

≤ −(x(t − d(t))− x(t − h2))TZ2(x(t − d(t))− x(t − h2))

− (x(t − h1)− x(t − d(t)))TZ2(x(t − h1)− x(t − d(t))). (8)

Combining (6)–(8) yields

V̇ (xt)

≤ x(t)T
[
PA+ ATP +

3∑
i=1

Qi − Z1 + AT(h21Z1 + h
2
12Z2)A

]
x(t)

+ 2x(t)T[PA1 + AT(h21Z1 + h
2
12Z2)A1]x(t − d(t))

+ 2x(t)TZ1x(t − h1)+ x(t − d(t))T[−(1− µ)Q3 − 2Z2
+ AT1(h

2
1Z1 + h

2
12Z2)A1]x(t − d(t))

+ 2x(t − d(t))TZ2x(t − h1)+ 2x(t − d(t))TZ2x(t − h2)
− x(t − h1)T(Q1 + Z1 + Z2)x(t − h1)
− x(t − h2)T(Q2 + Z2)x(t − h2)
= ζ (t)TΦζ (t),

where

ζ (t) = [x(t)T x(t − d(t))T x(t − h1)T x(t − h2)T]T,

Φ =

Υ PA1 Z1 0
∗ −(1− µ)Q3 − 2Z2 Z2 Z2
∗ ∗ −Q1 − Z1 − Z2 0
∗ ∗ ∗ −Q2 − Z2


+
[
A A1 0 0

]T
(h21Z1 + h

2
12Z2)

[
A A1 0 0

]
. (9)

With (9) and (4) it is concluded that system (1) is asymptotically
stable. This ends the proof. �

When h1 = 0, Theorem 1 reduces to the following corollary.

Corollary 1. System (1) subject to (2) and (3) is asymptotically stable
for given h2 > 0, h1 = 0 and µ if there exist matrices P > 0,
Qi > 0, i = 2, 3 and Z2 > 0 such that the following LMI holds
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