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a b s t r a c t

In this paper, we study the problem of estimating unknown parameters in nonlinear gray-box models
that may be multivariable, nonlinear, unstable, and resonant at the same time. A straightforward use of
time-domain predication-errormethods for this type of problem easily ends up in a large and numerically
stiff optimization problem.We therefore propose an identification procedure that uses intermediate local
models that allow for data compression and a less complex optimization problem. The procedure is based
on the estimationof thenonparametric frequency response function (FRF) in a number of operating points.
The nonlinear gray-boxmodel is linearized in the same operating points, resulting in parametric FRFs. The
optimal parameters are finally obtained by minimizing the discrepancy between the nonparametric and
parametric FRFs. The procedure is illustrated by estimating elasticity parameters in a six-axis industrial
robot. Different parameter estimators are compared and experimental results show the usefulness of the
proposed identification procedure. The weighted logarithmic least squares estimator achieves the best
result and the identified model gives a good global description of the dynamics in the frequency range of
interest for robot control.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

When building a mathematical model of a physical object, the
user generally has two sources of information; prior knowledge
and experimental data. This gives the two modeling extremes,
white-box models that are the result of extensive physical model-
ing from first principles, and black-box models, where the model
is just a vehicle to describe the experimental data without any
physical interpretations of its parameters. In between comes gray-
box models that are parameterizations based on various degrees
of physical insights. Compared with identification methods using
black-box models, gray-box models have some particular benefits.
By including prior information, the model set (number of param-
eters) can be reduced while still providing a good approximation
of the true system. This gives a reduced mean-square error (bias
and variance) (Ljung, 2008). Since the gray-box model in contrast
to the black-box model has a physical interpretation, the model is
also useful in many ways, such as design optimization and virtual
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prototyping, which are important areas in industry. Some stan-
dard references for identification of gray-box models are Bohlin
(2006), Ljung (1999), and Schittkowski (2002). There are also soft-
ware packages available for identifying such models, e.g., Bohlin
(2006), Kristensen, Madsen, and Jørgensen (2004), Ljung (2007),
and Schittkowski (2002).

In this paper,wewillmainly consider identification of nonlinear
gray-box models with the lightest shade of gray, where a white-
box model contains some unknown or uncertain parameters that
need to be estimated from data. To be even more specific, we will
allow our systems to bemultivariable, nonlinear, unstable, and reso-
nant at the same time. Usually, in the literature, at least one of the
first three properties is left out to reduce the problem complex-
ity. Identification of such complex systems is therefore challenging,
both in finding suitable model structures and efficient identifica-
tion methods. A straightforward use of time-domain predication-
error methods (Ljung, 1999) for this type of system easily ends up
in a large optimization problem, where each iteration in the opti-
mization routine involves a number of simulations of a large and
numerically stiff ODE for many samples. We therefore propose an
identification procedure that uses intermediate local models that
allow for data compression and a less complex optimization prob-
lem. The procedure is based on the estimation of the nonparamet-
ric frequency response function (FRF) in a number of operating
points. The nonlinear gray-box model is linearized in the same op-
erating points, resulting in parametric FRFs. The optimal param-
eters are finally obtained by minimizing a parametric criterion,
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Fig. 1. Illustration how the Ntot samples are distributed into Q operating points, where Ntot,i,0 samples are ‘‘wasted’’ to get to operating point iwhere the Ntot,i samples are
further distributed into nu parts to estimate a nonparametric FRF by using the nu steady-state responses, u(i,1)

t , y(i,1)
t , . . . , u(i,nu)

t , y(i,nu)
t , each of length Ni .

measuring the discrepancy between the nonparametric and para-
metric FRFs.

The main motivation for our study is identification of accurate
dynamic models for industrial robots, which incorporate all the
four mentioned properties. We will come back to this application
in Sections 5 and 6 when identification of elasticity parameters
(spring–damper pairs) is used as an example of the proposed
identification procedure.

Various aspects of the identification procedure will now be
explained in the coming sections, starting with a more detailed
outline of the procedure in Section 2. The nonparametric FRF es-
timation is described in Section 3, and some variants of the para-
metric criterion are presented in Section 4. This is followed by an
experimental evaluation in Section 5 and a small comparison with
timedomain identification in Section6. Finally, Section 7 concludes
the paper.

2. Gray-box identification using local models

In this paperwe consider the problemof identifying parameters
θ in the following nonlinear gray-box model

xt+1 = f (xt , ut , θ) + g(xt , ut , θ)wt , (1a)

yt = h(xt , ut , θ) + et , (1b)

with state vector xt ∈ Rnx , input vector ut ∈ Rnu , output vector
yt ∈ Rny , and θ ∈ Θ ⊂ Rnθ a vector of unknown parameters that
specifies the mappings f (·), g(·), h(·) that may all be nonlinear.
Furthermore, wt and et are process- and measurement noise
vectors, that are assumed to be mutually independent zero-mean
white processes with covariance matrices E(wtw

T
t ) = Qw and

E(eteTt ) = Qe.
One solution to the problem of identifying θ in (1) is to apply

a nonlinear prediction error method (Ljung, 1999, pp. 146–147).
The idea then is to find the parameters that will minimize the
prediction errors

εt,θ = yt − ŷt,θ , t = 1, 2, . . . ,Ntot,

where ŷt,θ is the model’s prediction of yt given previous measure-
ments {u1, y1, . . . , ut−1, yt−1, ut}. For the minimization, one can
choose different norms, but a common choice is a quadratic cri-
terion

V (θ) =

Ntot−
t=1

εT
t,θΛ

−1
t εt,θ , (2)

with weighting matrix Λt and Ntot equal to the total number of
measurement samples. For a general nonlinear system as in (1), it
is often very hard to determine a predictor on formal probabilis-
tic grounds. In most cases there is no explicit form available for the
optimal solution. This implies that a predictormust be constructed
either by ad hoc approaches, or by some approximation of the op-
timal solution, e.g., by using sequential Monte Carlo techniques
(Doucet et al., 2001) or the Extended Kalman Filter (Anderson &
Moore, 1979).Wewill further discuss such solutions in Section 2.4.

In this paper, we propose another solution to handle the non-
linearities in the system, where θ is identified by using interme-
diate local models. By performing experiments that sequentially

excite the local system behavior in a number of operating points
(u(i)

0 , y(i)
0 ), i = 1, . . . ,Q , the criterion (2) can be approximated by

V (θ) =

Q−
i=1

Ntot,i−
t=1

[ε
(i)
t,θ ]

T
[Λ

(i)
t ]

−1ε
(i)
t,θ , (3)

using the notation ε
(i)
t,θ = y(i)

t − ŷ(i)
t,θ where y(i)

t = yt+ti − y(i)
0

denotes the measured output around operating point i with out-
put vector y(i)

0 . The Ntot samples in (2) are therefore distributed
according to Fig. 1 (top part), where Ntot,i,0 samples are needed
to move the system to operating point i, in which Ntot,i samples
are collected, such that ti = Ntot,i,0 +

∑i−1
r=1(Ntot,r + Ntot,r,0) and

Ntot =
∑Q

i=1(Ntot,i + Ntot,i,0).

2.1. Linearized gray-box model

The predictor ŷ(i)
t,θ for the local model can be simplified com-

pared to ŷt,θ since only the local (linear) behavior needs to be cap-
tured. Assume now that the behavior of (1) around an operating
point (u(i)

0 , y(i)
0 ) can be described by the linearized model

x(i)
t+1 = A(i)

θ x(i)
t + B(i)

θ u(i)
t + B(i)

w,θw
(i)
t , (4a)

y(i)
t = C (i)

θ x(i)
t + D(i)

θ u(i)
t + e(i)

t , (4b)

where x(i)
t = xt+ti − x(i)

0 , u(i)
t = ut+ti − u(i)

0 , y(i)
t = yt+ti − y(i)

0 , and
x(i)
0 is obtained as, e.g., the solution to x(i)

0 = f (x(i)
0 , u(i)

0 , θ), y(i)
0 =

h(x(i)
0 , u(i)

0 , θ). Note that x(i)
0 therefore, in general, will be θ-

dependent. The matrices A(i)
θ , B(i)

θ , C (i)
θ ,D(i)

θ are the partial deriva-
tives of f (·) and h(·) w.r.t. xt and ut and evaluated in (x(i)

0 , u(i)
0 ), and

B(i)
w,θ = g(x(i)

0 , u(i)
0 , θ).

By assumingwt and et to be Gaussian and neglecting transients,
the optimal one-step ahead predictor ŷ(i)

t,θ for (4) is given by the
steady-state Kalman filter

x̂(i)
t+1 = A(i)

θ x̂(i)
t + B(i)

θ u(i)
t + K (i)

θ (y(i)
t − ŷ(i)

t,θ ), (5a)

ŷ(i)
t,θ = C (i)

θ x̂(i)
t + D(i)

θ u(i)
t . (5b)

Here, K (i)
θ = A(i)

θ P (i)
θ [C (i)

θ ]
T
[C (i)

θ P (i)
θ [C (i)

θ ]
T

+ Qe]
−1 where P (i)

θ is the
positive semi-definite solution of the stationary Riccati equation
(omitting indices)
P = APAT

− APCT (CPCT
+ Qe)

−1CPAT
+ BwQwBT

w.

By using (5), the prediction error ε
(i)
t,θ can be written as

ε
(i)
t,θ = [H(i)

θ (q)]−1
[y(i)

t − G(i)
θ (q)u(i)

t ], (6)
where q is the difference operator, ut+1 = qut , and

G(i)
θ (q) = C (i)

θ [qI − A(i)
θ ]

−1B(i)
θ + D(i)

θ , (7a)

H(i)
θ (q) = C (i)

θ [qI − A(i)
θ ]

−1K (i)
θ + I. (7b)

In case the measurement data around operating point i can be
described by (4) with θ = θ0, the prediction error ε

(i)
t,θ0

is the

innovation with covariance matrix Λ
(i)
0 = C (i)

θ0
P (i)

θ0
[C (i)

θ0
]
T

+ Qe. The

weights Λ
(i)
t in (3) should therefore be close to Λ

(i)
0 .
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