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a b s t r a c t

The Pontryagin Maximum Principle is one of the most important results in optimal control, and provides
necessary conditions for optimality in the form of amixed initial/terminal boundary condition on a pair of
differential equations for the system state and its conjugate costate. Unfortunately, this mixed boundary
value problem is usually difficult to solve, since the Pontryagin Maximum Principle does not give any
information on the initial value of the costate. In this paper, we explore an optimal control problem with
linear and convex structure and derive the associated dual optimization problem using convex duality,
which is oftenmuch easier to solve than the original optimal control problem.Wepresent that the solution
to the dual optimization problem supplements the necessary conditions of the Pontryagin Maximum
Principle, and elaborate the procedure of constructing the optimal control and its corresponding state
trajectory in terms of the solution to the dual problem.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The calculus of variations is a branch of mathematics which
generalizes ordinary calculus, and seeks to find the path, curve,
surface, etc., for which a given function has a stationary value. The
origin of the calculus of variations can be traced back to the 17th
century works of Bernoulli and Newton. It was developed further
in the 18th century by Euler and Lagrange and in the 19th century
by Jacobi, Hamilton and Weierstrass. In the early 20th century,
Bolza and Bliss gave the calculus of variations its present rigorous
mathematical structure on the basis ofWeierstrass’swork. Optimal
control is an extension of the calculus of variations, with the goal
of finding the input control function which minimizes a given
cost functional with differential equation constraints (Bryson,
1996). The maximum principle formulated in the 1950s by the
Russian mathematicians Pontryagin, Boltyanskii, Gamkrelidze and
Mishchenko is by far the most important result in optimal
control theory, and marked the emergence of optimal control as
a distinct field of research (Pontryagin, Boltyanskii, Gamkrelidze,
& Mishchenko, 1962). The Pontryagin Maximum Principle consists
of a system of state differential equations with initial condition
and a corresponding system of costate differential equations with
terminal condition, and not only includes every single known
result in the calculus of variations as special cases, but also allows
us to tackle optimization problems beyond the reach of all other
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methods. The lack of initial condition of the costate makes the two
point boundary value problem rather difficult to handle in general.

Several numerical techniqueswithout requirement of the initial
costate have beenproposed in the literature. In Teo, Goh, andWong
(1991), the original optimal control problem is approximated by a
sequence of optimal parameter selection problems through control
parametrization, where the control functions are approximated
by piecewise constant functions. Consequently, the optimal
control problem can readily be treated as nonlinear programming
problems if the gradients of the cost functional with respect to the
decision parameters are obtained. However, computation of the
required gradients involves the integration of the state differential
equations forward in time, followed by the integration of the
corresponding costate differential equations backward in time.
The state and costate systems are solved in opposite directions
using an adaptive integration scheme, hence it is impossible to
ensure that the state and costate knot sets coincide. Furthermore,
since solving the costate system is dependent on the solution
of the state system, an appropriate interpolation method needs
to be invoked, which compromises the accuracy of the resulting
gradients. A novel alternative scheme is introduced by virtue of
a new auxiliary system of differential equations in replacement
of the costate system Loxton, Teo, and Rehbock (2008), where
the auxiliary system can be solved simultaneously with the state
system.

The initial value of the costate can be furnished in some special
optimal control problems. For the linear quadratic regulator with
a finite time horizon, a well known procedure is available for
retrieving the initial condition based on linearity of the ordinary
differential equations in the maximum principle (Sontag, 1998).
Successively solving two first order quasilinear partial differential
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equations yields the initial costate for the nonlinear quadratic
problem (Costanza, 2007; Costanza & Rivadeneira, 2008).

In this paper, we only consider a simple representative
optimal control problem, known as a convex Mayer problem with
linear dynamics, and propose an algorithm to provide the initial
condition of the costate and to give the optimal control and its
corresponding state trajectory in an analytical waywithout solving
the maximum principle numerically. The paper is organized as
follows. In Section 2, the maximum principle is applied to the
Mayer problem, where the deficiency of the maximum principle
is illustrated. Next we briefly review convex analysis, the main
tool used to overcome the deficiency, in Section 3. In Section 4,
the Mayer problem is formulated as the Bolza problem in the
calculus of variations. We then explore the dual optimization
problem of the resulting Bolza problem by taking advantage of
convex analysis. The dual problem can be transformed into a
minimization problem over the finite dimensional Euclidean space
without any constraints, whose solution is the desired initial value
of the costate and the key to finding optimal control and its
corresponding state trajectory. Finally we give some conclusions
in the last section.

2. Problem statement

Consider a process evolving over the fixed time horizon [0, T ],
where T is a given terminal time, and satisfying the dynamical
system

ẋ(t) = A(t)x(t) + B(t)u(t) (1)

with the initial condition

x(0) = x0. (2)

Here, x(t) ∈ Rn and u(t) ∈ Rm are the state and input control of
the system at time t , respectively. A(t) and B(t) are real matrices
of dimensions of n × n and n × m, respectively. Let U be a convex
and compact subset of Rm. Any Borel measurable function u :

[0, T ] −→ U such that u(t) ∈ U almost everywhere on [0, T ]

is said to be an admissible control. Let U be the class of all such
admissible controls. For a given u ∈ U, the dynamical system (1)
has a unique absolutely continuous solution x(·|u) that satisfies
the initial condition (2). With this groundwork, we are now able
to introduce the linear/convex Mayer problem.
Problem (P) Given the dynamical system (1) and the initial
condition (2), find a u ∈ U such that the cost functional

g(x(T |u))

is minimized over U, where g : Rn
−→ R is a convex and

continuously differentiable function.
The problem can be restated as finding a u∗

∈ U such that

g(x(T |u∗)) ≤ g(x(T |u))

for all u ∈ U. If u∗
∈ U is an optimal control, and x∗(t) and λ∗(t)

are the corresponding state and costate, then from the maximum
principle,

λ̇∗(t) = −A′(t)λ∗(t),

with the terminal condition

λ∗(T ) = −∇g(x∗(T )),

where A′(t) is the transpose of A(t), and λ∗
: [0, T ] −→ Rn is an

absolutely continuous function. Moreover,

⟨λ∗(t), A(t)x∗(t) + B(t)u∗(t)⟩
= max

u∈U
⟨λ∗(t), A(t)x∗(t) + B(t)u⟩

= ⟨λ∗(t), A(t)x∗(t)⟩ + max
u∈U

⟨λ∗(t), B(t)u⟩,

where‘‘⟨·, ·⟩’’ represents the inner product. Thus,

⟨λ∗(t), B(t)u∗(t)⟩ = max
u∈U

⟨λ∗(t), B(t)u⟩

= max
u∈U

⟨B′(t)λ∗(t), u⟩,

i.e., u∗(t) is a point in U maximizing the mapping

u −→ ⟨B′(t)λ∗(t), u⟩ : U −→ R. (3)

Assumption 1. For simplicity, we always suppose that for each
ξ ∈ Rm, the mapping u −→ ⟨ξ, u⟩ : U −→ R is maximized at
a single point γ (ξ), that is

argmax
u∈U

⟨ξ, u⟩ = γ (ξ), ∀ξ ∈ Rm.

Then from (3), the optimal control u∗(t) is necessarily given by

u∗(t) = γ (B′(t)λ∗(t)).

Therefore we summarize the two point boundary value problem
(a) ẋ∗(t) = A(t)x∗(t) + B(t)u∗(t), x∗(0) = x0,
(b) u∗(t) = γ (B′(t)λ∗(t)),
(c) λ̇∗(t) = −A′(t)λ∗(t),
(d) λ∗(T ) = −∇g(x∗(T )).

(4)

It is well known that the necessary optimality conditions (4) for
the Mayer Problem (P) are also sufficient (Azhmyakov & Raisch,
2008). Unfortunately, (4) is a difficult system of equations to
handle, mainly because it involves an initial condition for the
state x∗(t) but only a terminal condition for the costate λ∗(t). In
particular, the maximum principle says nothing about what initial
value of the costate should be used with (4)(c) in order that the
remaining conditions of (4) be satisfied. A computational method
is developed in Teo et al. (1991), where the Mayer Problem (P)
is approximated by a sequence of parameter selection problems
using control parametrization such that the solution to each of
these approximate problems is a suboptimal solution to theMayer
Problem (P). Furthermore, the sequence of controls generated
by the method converges to the true optimal control in the
weak∗ topology of L∞([0, T ], Rm). Nevertheless, the system (4) is
numerically unstable when the costate system is solved forward in
time unless an accurate initial condition is available. To overcome
the deficiency, in what follows we derive an algorithm to furnish
the initial costate by exploiting the special structure of our problem
and convex duality.

3. Preliminaries from convex analysis

In this section we briefly discuss the generalized Bolza problem
in the calculus of variations, which is characterized by non-
smooth but convex data (Clarke, 1976). Then its dual problem and
several important results are presented, as have been thoroughly
discussed in Rockafellar (1970a). The prerequisites turn out to
yield an approach to solving the Mayer Problem (P) which offers
the initial costate noted in the previous section with respect to
the maximum principle. Let l and L(·, ·, t) be convex and lower
semicontinuous functions on Rn

× Rn with values in (−∞, +∞],
not identically +∞. Furthermore, L is B(Rn

× Rn) × L[0, T ]-
measurable. Let A1

n represent the set of absolutely continuous
functions from [0, T ] −→ Rn. The Bolza problem is stated as
follows.
Problem (P1) Find an x ∈ A1

n such that the cost functional

Φ(x) = l(x(0), x(T )) +

∫ T

0
L(x(t), ẋ(t), t)dt

is minimized over A1
n.
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