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Homogeneous-in-the-state bilinear systems, appended by an additive disturbance, appear both from the
discretization of some partial differential equations and from the bilinearization of certain nonlinear
systems. They often have large state vectors that can be cumbersome for simulation and control
system design. Our aim is to define a method, invariant to time transformations, for finding a reduced-
order model with similar disturbance-output characteristics to those of the plant for all admissible
input sequences. The inputs considered satisfy simple upper and lower bound constraints, representing
saturating actuators. The approximation is based on a model truncation approach and a condition for the
existence of such an approximation is given in terms of the feasibility of a set of linear matrix inequalities.
A novelty of our work is in the definition of a new Gramian for this class of systems. Explicit error bounds
on the scheme are included. The paper concludes with a demonstration of the proposed approach to the

model reduction of a solar collector plant.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Bilinear systems are a special class of nonlinear systems that
are linear in the input and linear in the state, but not jointly linear
in both. They have received considerable attention because they
offer something of a halfway house between linear and nonlinear
models. A review of applications and properties can be found in
Bruni, DiPillo, and Koch (1974) and Mohler (1973). We consider a
class of such systems known as continuous-time, homogeneous-
in-the-state bilinear systems (Bruni et al., 1974) in the presence of
an additive disturbance that are multi-input multi-output (MIMO)
and can be written in the form

m
x(t) = AX(D) + Y Nx(Dyus(t) + Rw(t), (1a)
i=1
y(&) = Cx(t), x(0) = xo, (1b)
where the state x : [0, c0) — R", outputy : [0, 00) — RP, distur-
bance w : [0, 00) — R",A,N; € R™"foralli € {1,...,m},C €
RP*" R € R™" and control input u; € U foralli € {1, ..., m}. We

* The material in this paper was partially presented at the 2010 American
Control Conference, June 30-July 2, 2010, Baltimore, MD, USA. This paper was
recommended for publication in revised form by Associate Editor Graziano Chesi
under the direction of Editor Roberto Tempo.

* Corresponding author. Tel.: +44 207 5946343; fax: +44 20 7594 6282.

E-mail addresses: iacou@vestas.com (1.J. Couchman), e.kerrigan@imperial.ac.uk
(E.C. Kerrigan), cboehm@ist.uni-stuttgart.de (C. B6hm).

0005-1098/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2011.01.030

consider the case where U = {u : [0, c0) — R | sup; |u(t)| < 1}.
This choice of U corresponds to systems where the inputs are
independently constrained as a result of saturating actuators, for
example. Note that simple upper and lower bound constraints can
be rewritten in this form by a simple change of variable (see the
example in Section 4). Interest in such a model stems from the need
for control of large-scale, input constrained nonlinear systems of
the form

x(t) = f(x() + Zgi(x(t))ui(t) + hx(©)w(t), (2a)
i=1
y(t) = Cx(t),  x(0) = xo, (2b)

where f, g : R" - R, h : R" - R"™ uy; € Uforalli € {1,
...,m}and w : [0, 00) — R’. With a linearization near an equi-
librium point or the Carleman bilinearization, nonlinear systems of
the form in (2) can sometimes be approximated by a system of the
formin (1) (Bai & Skoogh, 2006). There is an additional requirement
on g; such that its linearization leads to a term strictly linear in x as
opposed to an affine one. Examples of such systems can be found in
a range of fields including ecological systems (Mohler, 1973), fluid
mixing applications (Mathew, Mezi¢, Grivopoulos, Vaidya, & Pet-
zold, 2007) and solar energy plants (Tenny, Rawlings, & Wright,
2004). They may at first glance seem to be a peculiar class of sys-
tems as they have a special property: once at the origin, the input
cannot affect the system in the absence of a disturbance. Consider a
white liquid with a disturbance representing the addition of a mis-
cible red dye at a specific part of the domain. An input can stir the
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dye and the liquid to form a pink color, but once the resultant lig-
uid is pink, no amount of stirring can separate the red and white
components.

Control system design for constrained, nonlinear systems
is notoriously difficult. Receding horizon approaches offer one
option, although they require the recursive, online solution of
open-loop optimal control problems (Tenny et al., 2004). For even
moderately sized systems, this can be prohibitively expensive.
Generating reduced-order models for use in simulation or control
of such large-scale systems has therefore been the focus of
considerable research. Some work has already been carried out
on model reduction of general nonlinear systems (Scherpen,
1993) and bilinear systems (Hartmann, Zueva, & Schafer-Bung,
submitted for publication; Hsu, Desai, & Crawley, 1983; Zhang &
Lam, 2002) and so are applicable to the homogeneous-in-the-state
bilinear case. In Scherpen (1993), observability and controllability
functions are defined for a general nonlinear system. To compute
such quantities, the solution to a Hamilton-Jacobi-Bellman
type partial differential equation must be found—something
notoriously difficult to do even for small systems. Similarly, there
is no reason the reduced-order model would be bilinear (Gray
& Mesko, 1998). The application of the approach from Scherpen
(1993) to singularly perturbed bilinear systems is considered in
Djennoune and Bettayeb (2005). The authors use the structure
provided by a model containing simultaneously slow and fast
dynamics to simplify the computation of the bilinear system
Gramians although this is more a study into the structure of
bilinear system functions than a description of a model reduction
scheme. In Hartmann et al. (submitted for publication); Hsu
et al. (1983) and Zhang and Lam (2002) the observability and
controllability Gramians as defined by d’Alessandro, Isidori, and
Ruberti (1974) form the basis of the reduction scheme, but differ
in the fact that Hartmann et al. (submitted for publication) and
Hsu et al. (1983) consider balanced truncation type approaches
for model reduction, while Zhang and Lam (2002) consider a
frequency domain J¢, based reduction method. The Gramians in
d’Alessandro et al. (1974) are defined in terms of the kernels
of the Volterra series expansion of the state. A benefit of such
an approach is that they can be computed as the solution of
Generalized Lyapunov equations (Al-Baiyat & Bettayeb, 1993) of
the form

m
AQ+QA+ ) NQN;+C'C=0, (3)

i=1
which for certain types of system can be computed efficiently (Al-
Baiyat & Bettayeb, 1993). An interesting discussion of the physical
interpretation of such a Gramian can also be found in Gray and
Mesko (1998). In Hsu et al. (1983) the reduction is carried out
by approximating the bilinear observability and controllability
Gramians with lower-order ones via principal component analysis
(Moore, 1981). The balanced truncation method can be shown
to perform well on numerical examples (Hsu et al., 1983).
However, there are certain drawbacks not highlighted. These are
summarized in Section 3.1 and helps motivate the new results in
this paper. In order to address the problems described, we consider
two new Gramians, coined the D-Gramian and E-Gramian that
have simple energy-based interpretations. We show that suitable
examples of such Gramians can be computed as the solution of an
LMI constrained optimization problem.

The main contribution of this paper is the definition of a new
method for the model reduction of an homogeneous-in-the-state
bilinear system. This involves the discussion of some problems
with an existing approach, the definition of two new Gramians,
and the introduction to a reduction scheme. The new reduction
scheme is invariant to model time transformations and so, unlike
the existing approaches, shows no degradation in performance

when the units of time used in the plant modeling are changed. This
issue is discussed in detail and demonstrated on a study of a model
of a solar collector plant with the new scheme outperforming an
existing method for reduced-order models of the same size. As
a final contribution, a reduced-order model similar to the solar
collector plant is shown to exist, thereby motivating future work
into efficient control system design for such a plant.

This paper is organized as follows. The problem is formulated
in Section 2. Sections 3.1 and 3.2 discuss two different definitions
of Gramians about which a model reduction scheme can be based.
The first is the one used in Hsu et al. (1983), the second a new
construction and the paper’s first contribution. In Section 3.3,
a new reduction scheme is proposed and important properties
discussed. Section 4 demonstrates the algorithm on a real-world
example. Finally, some conclusions are given and future work
proposed.

2. Formal problem statement

This work is focused on computing a reduced-order model with
similar disturbance-output properties to those of the plant. To
achieve similar disturbance-output behavior we consider mini-
mizing the maximum £,-gain of the disturbance-error system
for all feasible input sequences. A realization (A, N1, ..., Ny, C, R)
refers to the system (1). The problem is formally written:

Sub-optimal disturbed model truncation: Given a y > 0, find a
projection matrix T € R™*", q < n satisfying:

o o® —30) ¢@) —g©)de

max = max 5 q )
Um weL ,00,
ue 10 Jo_ w(®Ow(t)dt

with X, = 0, where y is the output of the realization (A, N, ...,
N, C,R), y is the output of the realization (TAT™, TN:T™, ...,
TN, T*,CT™,TR) and u, w are the inputs and disturbances,
respectively, applied to both systems. .£,[0, co) is the spaces of
square integrable and Lebesgue measurable functions defined on
the interval [0, 0o), and T represents the Moore-Penrose pseudo-
inverse of T (Hogben, 2007).

Note that the matrix T projects the dynamics onto a subspace
of R", and so if X is the state of the reduced realization, then
T+X(t) is an approximation to x(t). It should also be noted at
this point that solutions to the sub-optimal disturbed model
truncation problem are generally not unique, because realizations
are typically invariant to a state coordinate transformation
(Dullerud & Paganini, 2000). Also note that this is a sub-optimal
model reduction scheme because we are constraining ourselves to
the problem of finding a truncation matrix capable of achieving the
desired performance.

Section 3 will show that the model reduction procedure to solve
the sub-optimal disturbed model truncation problem is:

(1) Find a D-Gramian P and an E-Gramian Q using Algorithm 2
from Section 3.4;

(2) Find the balancing transformation U and transformed Grami-
ansP=Q=25% using Algorithm 1 from Section 3.3;

(3) Examine the singular values (diagonal components of X)
and decide upon a q to achieve satisfactory performance
(using the error bounds of Theorem 7), then compute T =
[Iqxq OqX(nfq)] U;

(4) Compute the reduced disturbed realization (TAT™, TN:T™,
..., IN,T*, CT*, TR).

3. Solution

The solution approach involves using results from princi-
pal component analysis (PCA) (Jolliffe, 2002) to approximate a
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