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a b s t r a c t

In this paper, the extended Kalman filtering problem is investigated for a class of nonlinear systems with
multiplemissingmeasurements over a finite horizon. Both deterministic and stochastic nonlinearities are
included in the systemmodel, where the stochastic nonlinearities are described by statistical means that
could reflect themultiplicative stochastic disturbances. The phenomenon ofmeasurementmissing occurs
in a randomway and themissing probability for each sensor is governed by an individual random variable
satisfying a certain probability distribution over the interval [0, 1]. Such a probability distribution is
allowed to be any commonly used distribution over the interval [0, 1]with known conditional probability.
The aim of the addressed filtering problem is to design a filter such that, in the presence of both the
stochastic nonlinearities andmultiplemissingmeasurements, there exists an upper bound for the filtering
error covariance. Subsequently, such an upper bound is minimized by properly designing the filter gain
at each sampling instant. It is shown that the desired filter can be obtained in terms of the solutions
to two Riccati-like difference equations that are of a form suitable for recursive computation in online
applications. An illustrative example is given to demonstrate the effectiveness of the proposed filter design
scheme.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the past few decades, the filtering or state estimation prob-
lems for stochastic systemshave been extensively investigated. Ac-
cordingly, the filter theory has been successfully applied in many
branches of practical domains such as computer vision, commu-
nications, navigation and tracking systems, econometrics and fi-
nance, etc. It is well known that the traditional Kalman filter (KF)
serves as an optimal filter in the least mean square sense for lin-
ear systems with the assumption that the system model is exactly
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known. In the case that the system model is nonlinear and/or un-
certain, there has been an increasing research effort to improve
KF with hope to enhance their capabilities of handling nonlinear-
ities and uncertainties. Along this direction, many alternative fil-
tering schemes have been reported in the literature including the
H∞ filtering (Li, Lam, & Shu, 2010; Shi, Mahmoud, Nguang, & Is-
mail, 2006; Wu & Zheng, 2009; Xiong & Lam, 2006; Yue & Han,
2006), mixed H2/H∞ filtering (Rotstein, Sznaier, & Idan, 1994; Xie,
Lu, Zhang, & Zhang, 2004), set-value estimation (Bishop, Savkin,
& Pathirana, 2010; Calafiore, 2005; Cheng, Malyavej, & Savkin,
2010; Pathirana, Ekanayake, & Savkin, 2011) and robust extended
Kalman filter (EKF) design (James & Petersen, 1998; Kallapur, Pe-
tersen, & Anavatti, 2009; Xiong, Liu, & Liu, 2011; Xiong, Wei, &
Liu, 2010). Among them, the EKF has shown to be an effective
way for tackling the nonlinear system estimation problems. In fact,
EKF has recently gain particular research attention with promising
application potentials in various engineering practices. For exam-
ple, the EKF has been designed in James and Petersen (1998) and
Kallapur et al. (2009) for uncertain systems with quadratic con-
straints.Moreover, the EKF algorithmhas been successfully applied
inWang, Liu, Liu, Liang, and Vinciotti (2009) to identify the param-
eters and predict the states of a nonlinear stochastic biological net-
work modeled by time series data.
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Apart from the stochasticity, the nonlinearity is another
ubiquitous feature existing in almost all practical systems that
contributes significantly to the complexity of system modeling.
Since nonlinearities may cause undesirable dynamic behaviors
such as oscillation or even instability, the analysis and synthesis
problems for nonlinear systems have long been the main stream
of research topics and much effort has been made to deal with
the nonlinear stochastic systems, see e.g. Basin, Shi, and Calderon-
Alvarez (2009), Chen and Zheng (2011), Li and Lam (2011), Reif,
Günther, Yaz, and Unbehauen (1999) and Yaz (1987). It is worth
pointing out that, inmost literature, the nonlinearities are assumed
to occur in a deterministic way. While this assumption is generally
true especially for systems modeled according to physical laws,
another kind of nonlinearities, namely, stochastic nonlinearities,
deserve particular research attention since they occur randomly
due probably to the high maneuverability of the tracked target,
intermittent network congestion, random failures and repairs of
the components, changes in the interconnections of subsystems,
sudden environment changes, modification of the operating point
of a linearized model of nonlinear systems. In fact, such stochastic
nonlinearities include the state-multiplicative noises as special
cases. Recently, the filtering problemwith stochastic nonlinearities
described by statistical means has already stirred some research
interests, and some latest results can be found in Wei, Wang,
and Shu (2009) and Yaz and Yaz (2001) and the references
therein. On the other hand, almost all real-time systems are
time-varying and therefore the finite-horizon filtering problem is
of practical significance. However, so far, there have been very
few results in the literature regarding filtering problems with
stochastic nonlinearities over a finite horizon due probably to the
mathematical complexity and/or the computational difficulty.

In recent years, networked systemshave becomevery prevalent
and, accordingly, muchwork has been done in the literature on the
network-induced problems such as missing measurements (also
called packet loss or dropout) and random communication delays,
see e.g. Basin, Shi, and Calderon-Alvarez (2010), Hounkpevi and
Yaz (2007a,b), Sahebsara, Chen, and Shah (2007), Sun, Xie, Xiao,
and Soh (2008) and Yaz and Yaz (1997). To be more specific, the
optimal estimation problems have been investigated in Hounkpevi
and Yaz (2007a) and Sun et al. (2008) for linear systems with
multiple packet dropouts and the random sensor delays have
been taken into account in Hounkpevi and Yaz (2007b) and Yaz
and Yaz (1997). It is worth mentioning that, in most reported
results, the measurement signal has been assumed to be either
completely lost or successfully transferred, and a typical way is
to model the missing measurements by the Bernoulli distribution.
However, in practical applications, owing to the sensors aging,
sensor temporal failure or some of the data coming from a highly
noisy environment, the measurement missing might be partial
and individual sensor could have different missing probability in
the data transmission process (Wei et al., 2009). It is noted that
most available results with respect to the filtering problem with
missing measurements have been concentrated on linear systems
only, and the corresponding results for nonlinear systems have
been very few. It is worth mentioning that, in Kluge, Reif, and
Brokate (2010), the stochastic stability has been analyzed for EKF
with intermittent observations. Up to now, to the best of the
authors’ knowledge, the finite-horizon extended Kalman filtering
problem with both stochastic nonlinearities and multiple missing
measurements has not been addressed yet, which still remains as
a challenging research issue. It is, therefore, the purpose of this
paper to shorten such a gap by resorting to a recursive Riccati-like
equation approach.

Motivated by the above discussion, in this paper, we make
a major effort to design the EKF for a class of discrete time-
varying systems with stochastic nonlinearities and multiple

missing measurements. The considered stochastic nonlinearities
are governed by zero mean Gaussian noises. The multiple missing
measurements are included to model the randomly intermittent
behaviors of the individual sensors. The description of themultiple
missing measurements is more general than the commonly
used one modeled by the Bernoulli distribution. The probability
distribution governing the missing measurements from individual
sensor is allowed to be any discrete distribution taking values
over the interval [0, 1] with known occurrence probability. A
recursive approach is developed here to deal with the EKF
design problem. An optimized upper bound is guaranteed on the
filtering error covariance for both the stochastic nonlinearities
and multiple missing measurements. The main contributions
of this paper can be summarized (from the aspects of model,
problem and algorithm) as follows: (1) the system model is
comprehensive that covers stochastic nonlinearities and multiple
missing measurements, thereby better reflecting the reality;
(2) the addressed extended Kalman filtering problem over a finite
horizon is new especially when multiple missing measurements
are presented; and (3) the developed filter design algorithm is of a
form suitable for recursive computation in online applications.

The remainder of this paper is organized as follows. Section 2
briefly introduces the problem under consideration. In Section 3,
the linearization is first enforced to facilitate the filter design. Then,
the evolutions of one-step prediction error covariance and filtering
error covariance are derived for the addressed model. In the same
section, an upper bound of the filtering error covariance is obtained
and the filter gain is then designed to minimize such an upper
bound at each sampling instant. An illustrative example is utilized
in Section 4 to show the effectiveness of the proposed algorithm.
The paper is concluded in Section 5.

Notation. The notations used throughout the paper are standard.
Rn andRn×m denote the n-dimensional Euclidean space and the set
of all n×mmatrices, respectively. For amatrix P , PT and P−1 repre-
sent its transpose and inverse, respectively. P > 0 means that the
matrix P is real symmetric and positive definite. ◦ is the Hadamard
product with this product being defined as [A ◦ B]ij = Aij · Bij.
tr(·) stands for the trace of a matrix. E{x} stands for the expec-
tation of random variable x. I and 0 represent the identity ma-
trix and the zeromatrixwith appropriate dimensions, respectively.
diag{X1, X2, . . . , Xn} stands for a block-diagonal matrix with ma-
trices X1, X2, . . . , Xn on the diagonal. Matrices, if their dimensions
are not explicitly stated, are assumed to be compatible for algebraic
operations.

2. Problem formulation and preliminaries

In this paper, we consider the filtering problem for a general
class of discrete time-varying systems with stochastic nonlineari-
ties and multiple missing measurements, where the schematic di-
agram is shown in Fig. 1. The plant under consideration is of the
following form:

xk+1 = f (xk) + g (xk, ηk) + Dkωk (1)

yk = Ξkh (xk) + s (xk, ζk) + νk (2)

where k is the sampling instant, xk ∈ Rn is the state vector to
be estimated, yk ∈ Rq is the measurement output, ηk and ζk
are zero-mean Gaussian noise sequences, Dk is a known matrix
with appropriate dimension, ωk ∈ Rm is the process noise, and
νk ∈ Rq is the measurement noise. Ξk := diag{α1

k , α
2
k , . . . , α

q
k}

where αi
k (i = 1, 2, . . . , q) are q independent random variables

in k as well as i and are independent of all noise signals. It is
assumed that αi

k has the probability density function pik(s) on
the interval [0, 1] with mathematical expectation µi

k and variance
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