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a b s t r a c t

We present a distributed projection algorithm for system identification of spatiotemporally invariant
systems with the ultimate purpose of utilizing it in an indirect adaptive control scheme. Each subsystem
communicates only with its immediate neighbors to share its current estimate along with a cumulative
improvement index. On the basis of the cumulative improvement index, the best estimate available
is picked in order to carry out the next iteration. For small estimation error, the scheme switches
over to a ‘‘smart’’ averaging routine. The proposed algorithm guarantees to bring the local estimates
arbitrarily close to one another, developing a ‘‘local consensus’’, which makes it amenable to control by
the application of indirect distributed adaptive control schemes. It is also shown through simulations
that the proposed algorithm has a clear advantage over the standard projection algorithm. Our proposed
algorithm is also suitable for addressing the estimation problem in distributed networks that arise in a
variety of applications, such as environment monitoring, target localization and potential sensor network
problems.

Published by Elsevier Ltd

1. Introduction

With the advances in sensing and actuating techniques coupled
with the incessant increase in computational power, the idea of
developing more and more complex systems by putting together
simpler smaller units is turning into a reality. Examples of such sys-
tems can be cited fromvarious areas such as satellite constellations
(Shaw, Miller, & Hastings, 1998), cross-directional control in paper
processing applications (Stewart, 2000), airplane formation flying
(Chichka & Speyer, 1998; Wolfe, Chichka, & Speyer, 1996), auto-
mated highway systems (Raza & Ioannou, 1996) and microcan-
tilever array control for various nanorobotic applications (Sarwar,
Voulgaris, & Salapaka, 2011a). Lumped approximations of partial
differential equations (PDEs) can also be considered in this regard—
examples include the deflection of beams, plates, and membranes,
and the temperature distribution of thermally conductive materi-
als (Taylor, 1996). Centralized control of such distributed systems
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becomes increasingly complicated and difficult to implement as
the number of underlying subsystems or units increases, hence
making distributed control inevitable. The control design of any
system, however, is only as good as the system model. When the
system model is not available upfront, system identification and
control action have to be implemented in parallel. As the sys-
tem model gets updated, the control law needs to adapt in order
to guarantee stability/performance. Hence, adaptation as well as
identification need to be carried out in a distributed manner for
systems with large numbers of subsystems or units.

Control design of distributed systems is a daunting task in gen-
eral, and is mostly dominated by the architectural and localization
constraints. Such design problems are well known to be difficult,
with now nearly three decades of research; see Siljak (1991) and
the references therein. Several attempts have been made already
to address the problem of distributed adaptive control of intercon-
nected systems employing different approaches while assuming
various structures. The most notable early work can be attributed
to Ioannou and Kokotovic (1985) in this regard, where weakly in-
terconnected subsystemswere studied. Subsequent work includes
the M-matrix approach in Ossman (1989), and a high-gain ap-
proach inGavel and Siljak (1989) assuming a strictmatching condi-
tion on the disturbances. Amethodology for handling higher-order
interconnections in a distributed adaptive control framework was
developed in Shi and Singh (1992), whereas neural networks have
been used to approximate unknown interconnections in Spooner
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Notation

R Set of reals
Z Set of integers
Z+ Set of non-negative integers
le
∞

Space of all real spatiotemporal sequences f =

{fi(t)} with a two-sided spatial support (−∞ ≤ i ≤

∞) and one-sided temporal support (0 ≤ t ≤ ∞)
LSTV Linear spatiotemporally varying system
LSTI Linear spatiotemporally invariant system
R̂(z, λ) z, λ transform of LSTI system R
B(a, ε) {x ∈ R | |a − x| ≤ ε}
Supp(m) Support of a spatiotemporal sequence {mi(t)} =

{[i, t] ∈ Z2
: mi(t) ≠ 0}

∥ · ∥ The Euclidean norm for vectors or the system
(induced) norm.

and Passino (1996) and Spooner and Passino (1999). Prior sharing
of information amongst controllers about the reference model has
been assumed in Mirkin and Gutman (2003), Narendra and Oleng
(2002) and Hovakimyan, Lavretsky, Yang, and Calise (2005) for
asymptotic tracking of desired outputs. In each of the above cited
works, a very narrow class of systems has been addressed owing
to the lack of any unified framework for distributed systems. Sys-
tems, therefore, have to be treated on a rather case by case basis
for distributed control design.

Systems that are either homogeneous or are made up of
similar subsystems or units can be approximated by their
infinite abstractions, i.e. they can be considered as spatially
invariant (refer to Curtain, Iftime, and Zwart (2010) for instances
where these abstractions are valid). Examples of such systems
include arrays of identical microcantilevers for atomic force
microscope applications (Sarwar et al., 2011a), large segmented
telescopes (Jiang, Voulgaris, Holloway, & Thompson, 2006),
temperature control of thermally conductive material (Taylor,
1996), and fluid flow control (Bamieh, Paganini, & Dahleh, 2002),
to cite but a few. Spatial invariance is a strong property of a given
system, which means that the dynamics of the system do not vary
as we translate along some spatial axis. While the control design
of spatially invariant systems has been worked out in some detail
(see e.g. Bamieh et al. (2002) and D’Andrea and Dullerud (2003)),
knowledge of the underlying system model is assumed a priori.
A distributed identification scheme is, therefore, imperative for
control design and implementation where the systemmodel is not
available upfront.

This article aims to develop a distributed identification scheme
for spatially invariant systems that can be used for the adaptation
of control laws that are designed for a known plant model. We
focus on systems that are recursively computable within the class
of spatially invariant systems. Recursibility is a property of certain
difference equations, that allows one to iterate the equation by
choosing an indexing scheme such that every output sample can
be computed from outputs that have already been found from
initial conditions and from samples of the input sequence. Systems
that can be represented by a two-dimensional rational transfer
functions are recursively computable, i.e. a system P is recursively
computable if its transfer function has the form

P̂(z, λ) =
B̂(z, λ)

Â(z, λ)
(1)

where B̂ and Â are polynomials in z (spatial domain) and λ (time
domain) (Bose, 1982). If Â and B̂ or equivalent state space
descriptions are known, current LSTI control design methods can

be readily applied. Refer to Bose (1982) (Section 4.5) for a detailed
discussion on the conversion of a transfer function formulation
into the equivalent state space description. Recursive systems
are guaranteed to be well defined and this class encompasses
many systems of practical importance, such as discretized
partial differential equations (PDEs; deflection of beams, plates,
membranes, the temperature distribution of thermally conductive
materials (Taylor, 1996)). Systems already discussed above in
Sarwar et al. (2011a) and Jiang et al. (2006) are also recursively
computable.

Results on parameter estimation for linear lumped systems
have been well established (see Goodwin and Sin (1984) and John-
son (1988)). Distributed estimation/identification, on the other
hand is still an active area of research. It finds applications in dis-
tributed optimization, network consensus, sensor fusion, dynamic
systems characterized by PDEs, and wireless networks to name
but a few examples. Each of the aforementioned areas brings its
own flavor to the quest for distributed estimation/identification.
The literature on system identification of distributed systems (as-
suming a centralized setting) is abundant, with the early attempts
geared towards investigations dealing with the ‘inverse problem’
in heat transfer. For a thorough historic development in this re-
gard see Banks and Kunish (1989), Kubrusly (1977) and Polis and
Goodson (1976) and the references therein.

In principle, quite a few recently developed algorithms can
be employed for the identification of spatially invariant systems.
Diffusion techniques are proposed in Lopes and Syed (2007),where
each subsystem combines its current estimate with the estimate
of its neighbors, based on some performance criterion, to come
up with an aggregate. This aggregate is then used for carrying
out the next estimation update. A similar space–time diffusion
approach can be found in Xiao, Boyd, and Lall (2006). An iterative
optimization algorithm for a networked system is considered
in Ram, Nedić, and Veeravalli (2009). Each subsystem (agent)
obtains a weighted average of its own iterate with the iterates
of its neighbors, and updates the average using the subgradient
of its local function to generate the new iterate. Identification
of circulant systems is considered in Massioni and Verhaegen
(2008) by employing the spatial Fourier transform. The identified
data available to each subsystem, however, should be processed
centrally in order to construct the global system matrices.

From a control adaptation perspective, however, we are
interested in ascertainingwhether the following are achieved from
a distributed system identification scheme for a spatially invariant
system:

(a) the estimation error (the difference between the actual and
predicted system output) goes to zero, regardless of the
convergence of estimates to the true value;

(b) estimates get close to each other arbitrarily as time grows (at
least locally).

While the requirement of (a) is quite clear, the requirement
of having (b) is motivated from the fact that such estimated
systems can be used for adaptive control using the results
recently developed in Sarwar, Voulgaris, and Salapaka (2011b).
The literature cited above on system identification, however,
does not provide guarantees that we require in (a) and (b). No
literature exists, to our knowledge, that addresses the system
identification (or adaptive control for that matter) of spatially
invariant systems from a control adaptation perspective that
provides these guarantees. With this motivation, we develop
a distributed projection algorithm for system identification of
recursively computable spatiotemporally invariant systems that
achieves both of the above mentioned objectives and can,
therefore, be employed for adaptive control of spatially invariant
systems as demonstrated in Sarwar, Voulgaris, and Salapaka
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