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This paper discusses a method for estimating the covariance matrix of a multivariate stationary process
w generated as the output of a given linear filter fed by a stationary process y. The estimated covariance
matrix must satisfy two constraints: it must be positive semi-definite and it must be consistent with the
fact that w is the output of the given linear filter. It turns out that these constraints force the estimated
covariance to lie in the intersection of a cone with a linear space. While imposing only the first of the two
constraints is rather straightforward, guaranteeing that both are satisfied is a non-trivial issue to which
quite a bit of attention has already been devoted in the literature. Our approach extends the method for
estimating the Toeplitz covariance matrix of order M of a process y based on the biased spectral estimator
(Stoica & Moses, 1997). This extension is based on the characterization of the output covariance matrix in
terms of the filter parameters and the sequence of covariance lags of the input process.

After introducing our estimation method, we propose a comparison performance between this one
and other methods proposed in the literature. Simulation results show that our approach constitutes a
valid estimation procedure.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the process w = {wy}2_, obtained
as the output of a given stable rational filter G(z) fed by a stationary
process y = {Vk}ro_o- We assume to observe a finite-length
collection of sample datayy, ..., yy of the stochastic process y. We
want to compute an estimate 5 of the covariance ¥ := E [wewy]

in such a way that % is both positive semi-definite and consistent
with the filter G(z). Here * denotes transposition plus conjugation.
To analyze the features of this problem and to provide some
motivations and applications, we discuss a very simple example.
Let y be a real scalar second-order stationary process and let G(z)
be a bank of | delays:

Gy =[z" z% .. 2. (1)

In this case, the covariance matrix X of the output? w has the form
of a symmetric Toeplitz matrix having the first [ covariance lags of
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y on the first row:

To . - T
= . . . | m=Eeayl (2)

-1 on To

If we need to estimate X, it is natural to impose that the estimate
5 be positive semi-definite and have Toeplitz structure. On the one
hand, one can consider the estimate % obtained by computing the
sample covariance lags of y and constructing the corresponding
Toeplitz matrix. This estimate, however, is not guaranteed to be
positive semi-definite. On the other hand, one can compute the
sample covariance S = ZL] wrwy of the output process w.
The latter is, by construction, positive semi-definite but is not
guaranteed to be Toeplitz. Notice, in passing, that the orthogonal
projection of this estimate onto the linear space of Toeplitz
matrices is no longer guaranteed to be positive semi-definite. This
problem, yet important, is very special due to the FIR structure
of G(z) in (1). In this case, it is well-known that the problem
can be solved by computing, from yq, ..., yn, the estimates 7,
of the r, in (2), with the biased correlogram spectral estimator
(Stoica & Moses, 1997). Alternatively, one can use a constrained
convex optimization approach (Burg, Luenberger, & Wenger, 1982;
Ferrante, Pavon, & Zorzi, 2012).

The estimation of positive semi-definite Toeplitz matrices is
just an instance of a class of problems in digital signal processing
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where the covariance matrix of the output process of a general
linear filter has to be estimated with the knowledge of the
input sample data. The importance of these problems is due
to the development of a family of spectral estimation methods
introduced by Byrnes, Georgiou and Lindquist in Byrnes, Georgiou,
and Lindquist (2000), and Byrnes, Georgiou, and Lindquist (2001),
and further developed and modified in Georgiou (2002a), Ferrante,
Masiero, and Pavon (in press) and Ferrante, Pavon, and Ramponi
(2008). These methods, for which y, ..., yy and G(z) are the given
data, are based on a moment problem that requires an estimate of
the covariance matrix of the output w. The first of these spectral
estimation methods was called “THREE”, Byrnes et al. (2000): we
shall thus refer to these methods as “THREE-like”.

For the special case of linear filters G(z) whose output is
the state of the filter, the problem of characterizing the output
covariance X has been addressed by Georgiou in Georgiou (2001)
and Georgiou (2002b). This characterization can be employed
to estimate the state covariance by resorting to the maximum
likelihood approach proposed in Burg et al. (1982) which, however,
requires that the state covariance X and the sample covariance 3¢
are strictly positive definite. In Ferrante et al. (2012), a maximum
entropy problem has been proposed that leads to a positive definite
estimate 3 consistent with the filter structure. Notice that also
this technique requires that the state covariance X and the sample
covariance 3¢ are strictly positive definite and that the filter’s
output and state coincide. On the other hand, these techniques do
not exploit the knowledge of yq, ..., yy that, in the THREE-like
methods, are the problem data.

The purpose of this paper is to introduce a new approach—
based on the knowledge of the input sample data y, ..., yy—to
compute a positive semi-definite estimate 5 whose structure is
consistent with an arbitrary, finite dimensional, stable, linear filter
G(z). Our method, which is an extension of the one for estimating
the Toeplitz covariance matrix of order M of the process y based on
the biased spectral estimator (Stoica & Moses, 1997), hinges on the
characterization of X in terms of the filter G(z) and the covariance
lags sequence of the input process y. Thus, given an estimate of the
covariance lags sequence of the input process, we can compute an
estimate 3 consistent with the structure imposed by the filter. It
will be shown that if we consider the sample covariance lags used
in the biased correlogram spectral estimator we can guarantee that
z=>o.

The paper is organized as follows. In the next section, we
present a more precise formulation of the problem. In Section 3, the
vector space containing the covariance matrices X is characterized
in terms of the filter G(z). Section 4 is devoted to introduce our
approach based on the covariance lags. In Section 5, we briefly
discuss other approaches available in the literature and their
possible generalizations. Section 6 is devoted to simulations: we
compare covariance matrices estimated by our method with the
ones obtained using alternative approaches. In Section 7, we draw
our conclusions.

2. Problem formulation

Consider a linear filter

Xk+1 = AXe + By

wy = Cxx + Dy, kez, (3)
where A € C™", B € C™™ C € CP*",D € CP*™ and A has all its
eigenvalues in the open unit disk. The input process y is C™-valued,
wide sense stationary and purely nondeterministic. As mentioned
in the Introduction, ¥ = X* > 0 denotes the covariance matrix
of the (stationary) output process w and we denote by

G(z)=C@zI —A)'B+D (4)

the filter transfer function. Let $,, be the m?-dimensional, real
vector space of Hermitian matrices of dimension m xm and $)n, 4 be
the intersection between $),;; and the closed cone of positive semi-
definite matrices. We denote by C(T, $,,) the family $,,-valued,
continuous functions on the unit circle T. Consider now the linear
operator

I :C(T, Hm) = 9p, ¥ > /GlI/G*, (5)

where integration takes place on T with respect to the normalized
Lebesgue measure d¢ /2. It follows that X' belongs to the linear
space

Range I" := :M € 9| 3¥ € C(T, Him)

such that /GWG* =M]. (6)

Suppose now that A, B, C, D are known and a sample data {yk}f.":1
is given. We want to compute an estimate 5 of ¥ such that

Se [Range I']; :=Range I"' N 9, ;. (7)

If we feed G(z) with the data {yk}f:1 and we collect the output
data {wk}g:], an estimate of X' is given by the sample covariance
S = x S o, ww; > 0. This estimate, as it happened in the
example discussed in the Introduction, normally fails to belong to
Range I'.In fact, Range I is a linear vector subspace usually strictly
contained in $j,. One could project 3¢ onto Range I' obtaining
a new Hermitian matrix 2]*. This matrix ﬁ‘p, however, may be
indefinite and this is particularly likely when N is not large. In
addition, when the linear filter G(z) does not satisfy particular
properties, the computation of a basis for Range I” is not trivial.

3. Characterization of Range I”

We start by considering a particular, yet very relevant, situation.
We will later deal with the general case.

3.1. State covariance matrices

Next we restrict attention to the case when C = I, and D =
Onxm, With m < n, so that X' is a state covariance matrix. Under
the additional assumptions that (A, B) is a reachable pair and B has
full column rank, it was shown in Georgiou (2001) and Georgiou
(2002b) (see also Ramponi, Ferrante, & Pavon, 2010), thatann x n
matrix M € §), belongs to Range I if and only if there exists
H € C™" such that

M — AMA* = BH + H*B*. (8)
Moreover, it is possible to prove that Range I" has real dimension
equal to m(2n — m), Ferrante et al. (2012).

We now want to relax the reachability assumption. To this end,
we derive a preliminary result. Consider an (A, B) pair and the
operator I" corresponding to G(z) = (zI — A)~'B. We perform a
state space transformation induced by an invertible matrix T €
(Cnxn'

A:=T7'AT, B:=T"'B. (9)
We define the corresponding operator

I C(T, $m) = Hn, ¥ > /éwf;* (10)
with G(z) = (zI — A)~'B = T~'G(2). Note that

/G!I/G* = /TE;W&*T*, Y& € C(T, Hp). (11)
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