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In this contribution we present an intrinsic description of time-variant Port Hamiltonian systems as they
appear in modeling and control theory. This formulation is based on the splitting of the state bundle
and the use of appropriate covariant derivatives, which guarantees that the structure of the equations
is invariant with respect to time-variant coordinate transformations. In particular, we will interpret our
covariant system representation in the context of control theoretic problems. Typical examples are time-

variant error systems related to trajectory tracking problems which allow for a Hamiltonian formulation.
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an intrinsic fashion.

Furthermore we will analyze the concept of collocation and the balancing/interaction of power flows in
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1. Introduction

Hamiltonian systems have been the object of analysis for a
long period and they have been investigated from many different
points of view and in many different scientific areas. In the last
two decades, in mathematical physics especially field theoretic
aspects of Hamiltonian systems without control input are of
importance, see Giachetta, Sardanashvily, and Mangiarotti (1997),
Gotay (1991) and Kanatchikov (1998). In field theory the use of
bundles to distinguish dependent and independent coordinates
is commonly used and since time-variant lumped parameter
systems can be seen as a special case of field theory with only
one independent coordinate the use of bundles also applies to
time-variant systems where the fibration is accomplished with
respect to the time coordinate. Besides field theory, also in classical
mechanics, especially in the time-invariant setting, the geometric
interpretation of the Hamiltonian picture is well established,
see for example Abraham and Marsden (1978) for many details
concerning this subject.

From the control theoretic point of view, the class of Port
Hamiltonian systems is a well-analyzed class, see for example
Ortega, van der Schaft, Maschke, and Escobar (2002) and van der
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Schaft (2000) and references therein, where both the theoretical
point of view and, of course, the physical applications play a
prominent role. Roughly speaking, the main idea of many passivity
based control approaches is to maintain the Hamiltonian structure
of the system by feedback since this structure has some pleasing
properties concerning the stability proof also in the nonlinear
scenario.

In the literature most of these approaches for the lumped
parameter scenario concerning control theoretic aspects present
system analysis, modeling and control for time-invariant systems,
whereas the time-variant case is analyzed very rarely. We believe
that the main difficulty in the time-variant scenario is the fact
that the geometric picture of the equations changes considerably.
In the time-invariant setting the role of time is solely to be the
curve parameter, which is not true in the time-variant scenario.
Contributions which treat the time-variant case especially with
regard to control theoretic problems are for example Fujimoto
and Sugie (2001, 2003) where the authors consider what they call
generalized Hamiltonian systems and canonical transformations
which might be time-dependent.

Two important applications where time-variant systems arise
quite naturally based on a time-variant change of coordinates
should be mentioned at this stage: Firstly, the introduction of
displacement coordinates with respect to a system trajectory as
it arises for instance when the analysis of the tracking error is
the objective, see for example Fujimoto and Sugie (2003). And
secondly, in mechanics/robotics floating/accelerated frames of
reference are commonly used with respect to an inertial one.

The main contributions of this paper are that: (i) an intrinsic
definition of time-variant (Port) Hamiltonian systems is given
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based on a covariant derivative induced by a connection; (ii) this
intrinsic description is analyzed in a differential geometric way;
(iii) for the system class of time-variant (controlled) Hamiltonian
mechanics, a covariant version of the power balance relation
including collocation is developed; and (iv) for the special case
where (beside a possible feed-forward) the connection can be
expressed as an additive Hamiltonian the results of Fujimoto and
Sugie (2001) are recovered.

It is worth mentioning that in our opinion a time-variant
(Port) Hamiltonian system has to be introduced using covariant
derivatives, which differs significantly from the definition in
Fujimoto and Sugie (2001, 2003). We identify ‘covariant’ with the
fact that system properties do not depend on the chosen coordinate
chart, i.e., we formulate systems in an intrinsic way. The key idea
is the use of a connection which induces a covariant derivative,
see Giachetta et al. (1997). Partially, results in this paper have
been presented preliminarily in Schoberl and Schlacher (2006) and
Schéberl, Stadlmayr, and Schlacher (2007).

2. The time-invariant case

This introductory section is a reminder of time-invariant Port
Hamiltonian systems (Maschke, Ortega, & van der Schaft, 2000;
Ortega et al., 2002; van der Schaft, 2000) including also the
arising matching conditions when state transformations and affine
input transformations are considered. It serves as a basis for
the generalization to the time-variant case and is also used
to introduce the differential geometric language which is then
extensively exploited in the time-variant scenario. The notation is
similar to the one in Giachetta et al. (1997), where the interested
reader can find much more details about this geometric machinery.

To keep the formulas short and readable we will use tensor
notation and especially Einstein’s convention on sums where we
will not indicate the range of the indices used when they are clear
from the context. We use the standard symbol ® for the tensor
product, d is the exterior derivative, | the natural contraction
between tensor fields and o denotes the composition of maps. By 8};’
are meant the partial derivatives with respect to coordinates with
the indices 4.

To study the time-invariant case of Port Hamiltonian systems in
a geometric fashion we introduce the state manifold X equipped
with coordinates (x*), wherea = 1, ..., dim(2) and we consider
diffeomorphisms (in the following also called transition functions)
of the type X = ¢ (x) where x denotes the states in the transformed
coordinate system. Standard differential geometric constructions,
see Abraham and Marsden (1978), Giachetta etal. (1997), Nijmeijer
and van der Schaft (1990) and Saunders (1989), lead to the tangent
bundle 7(X) and the cotangent bundle 7*(X), which possess
the induced coordinates (x*, x*) and (x*, x,) with respect to the
holonomic bases 9, and dx*. Typical elements of 7 (X) (vector
fields) and 7*(X) (1-forms) read in local coordinates as w =
X*(x)0, and @ = X, (x)dx*, respectively. To introduce inputs
and outputs we consider the vector bundle U — X with the
coordinates (x*, u') for U and the base e; for the fibers where i =
1,...,dim(Ug), where U+ denotes the fibers of the input bundle
(vector spaces) as well as the dual output vector bundle ¥ — X
possessing the coordinates (x®, y;) and the fiber base e'. Greek
indices will correspond to the components of the coordinates of the
state manifold and induced structures. Latin indices correspond to
the components of the input and the output variables (fibers of the
dual bundles U — X and ¥ — X). Let us consider the maps
J,R : T*(X) — T (X) which are contravariant tensors that are
given by the local coordinate expressions

J=J"3,®d, R=R"3,®30 (1)

with J*# R* ¢ @>°(X) where ] is skew-symmetric, i.e. J*/ =
—JA* and R is symmetric R*? = RP* and positive-semidefinite.
Furthermore we introduce the bundle map G : U — 7 (X) which
is a tensor that has the local coordinate expression G = G¥e' ® 9,
with Gf € C*°(X). Having the maps J, R and G at our disposal
a time-invariant Port Hamiltonian system (with dissipation), see
Maschke et al. (2000), Ortega et al. (2002) and van der Schaft
(2000), can be constructed as

x=( —R)JdH +Glu

y=G'ldH (2)

where the function H € C*(X) denotes the Hamiltonian and
G* : T*(X) — Y the adjoint (dual) map of G. The local coordinate
expression of (2) reads as

3
Yi :Gf‘aaH. ( )

We want to analyze structure preserving transformations for the
system (2). To allow for affine input transformations we can
replace the input bundle by an affine one Z — X (with underlying
vector bundle U — X)), for the geometric properties of affine
bundles see for example Giachetta et al. (1997) and references
therein. The transition functions for the vector bundle and the
affine bundle read as

i=Mu, #=Mud (4)
i=Mu+g, ¥ =Mu+g (5)
with M!, g/ € C>(%) where u denotes the transformed input
coordinates and we restrict ourselves to regular transformations
(i.e. M is invertible). The geometric representation of the system
leads to the observation that the structure of (2) is preserved by a
diffeomorphism of the type x = ¢(x) together with (4). The case of
an affine input bundle is more challenging since the preservation
of the structure demands to solve a partial differential equation.
See also Cheng, Astolfi, and Ortega (2005) in this context, where
the problem of general feedback equivalence of nonlinear systems
to Port Hamiltonian systems is discussed and so-called matching
conditions appear.

Lemma 1. Consider the system (2) together with the diffeomorphism
X = @(x) and (5). The structure of (2) is preserved if and only if we
can find a solution H € C*(X) of the partial differential equations

g — R&Ef)aﬁg - (8a(pa0?,\7,];gi> 0 =0. (6)

Here j_&B and R are the components of the transformed ten-
sors (1) with respect to x = ¢(x). The inverse maps are denoted by

x = @(X) and M{AA/I]-?‘ = 8¥ where § is the Kronecker delta.

Remark 2. The partial differential equations (6) are written in the
coordinates x but it is readily observed that they can be formulated
in the original coordinates x, as well.

The proof of this lemma is a straightforward calculation in local
coordinates. If in Lemma 1 a solution for H can be obtained, then
the following corollary is an immediate consequence.

Corollary 3. Suppose (6) is met, then the system (3) in the new
coordinates reads as

7% — R*)35(H — H) + Gl
o
1

X =
¥ = G¥o5(H — H)
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