Accepted Manuscript

Title: Fabrication and characterization of novel iodine doped hollow and mesoporous hematite (Fe_2O_3) particles derived from sol-gel method and their photocatalytic performances

Authors: Selim Demirci, Metin Yurddaskal, Tuncay Dikici, Cevat Sarıoğlu

S0304-3894(17)30831-2
https://doi.org/10.1016/j.jhazmat.2017.11.009
HAZMAT 18980
Journal of Hazardous Materials
16-7-2017
24-10-2017
5-11-2017

Please cite this article as: Selim Demirci, Metin Yurddaskal, Tuncay Dikici, Cevat Sarıoğlu, Fabrication and characterization of novel iodine doped hollow and mesoporous hematite (Fe2O3) particles derived from solgel method and their photocatalytic performances, Journal of Hazardous Materials https://doi.org/10.1016/j.jhazmat.2017.11.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fabrication and characterization of novel iodine doped hollow and mesoporous hematite (Fe₂O₃) particles derived from sol-gel method and their photocatalytic performances

Selim Demirci^{1,2}*, Metin Yurddaskal^{3,4} Tuncay Dikici⁴, Cevat Sarıoğlu¹

 ¹Department of Metallurgical and Materials Engineering, Marmara University, Kadiköy, 34722, Istanbul, Turkey
²Institute of Pure and Applied Sciences, Marmara University, Kadiköy, 34722, Istanbul, Turkey
³The Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Buca, 35390, Izmir, Turkey
⁴Center for Fabrication and Application of Electronic Materials, Dokuz Eylul University,

Buca, 35390, Izmir, Turkey

Abstract

In this work, iodine (I) doped hollow and mesoporous Fe₂O₃ photocatalyst particles were fabricated for the first time through sol-gel method. Phase structure, surface morphology, particle size, specific surface area and optical band gap of the synthesized Fe₂O₃ photocatalysts were analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), BET surface analysis, particle size analyzer and UV-vis diffuse reflectance spectrum (UV-vis DRS), respectively. Also, electrochemical properties and photoluminescence spectra of Fe₂O₃ particles were measured. The results illustrated that high crystalline, hollow and mesoporous Fe₂O₃ particles were formed. The optical band gap values of the Fe₂O₃ photocatalysts changed between 2.104 and 1.93 eV. Photocatalytic efficiency of Fe₂O₃ photocatalysts were assessed via MB solution. The photocatalytic activity results exhibited that I doping enhanced the photocatalytic efficiency. 1% mole iodine doped (I-2) Fe₂O₃ photocatalyst had 97.723% photodegradation rate and 8.638 \times 10⁻² min⁻¹ kinetic constant which showed the highest photocatalytic activity within 45 minutes. Moreover, stability and reusability experiments of Fe₂O₃ photocatalysts were carried out. The Fe₂O₃ photocatalysts showed outstanding stability after four sequence tests. As a result, I doped Fe₂O₃ is a good candidate for photocatalysts.

Keywords: Sol-gel; Hematite; Mesoporous; Iodine doping; Photocatalytic Activity.

*Corresponding Author.

E-mail address: selim.demirci@marmara.edu.tr, selim.demirci@gmail.com

Download English Version:

https://daneshyari.com/en/article/6969298

Download Persian Version:

https://daneshyari.com/article/6969298

Daneshyari.com