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a b s t r a c t

Closed quantum systems under the influence of a laser field, whose interaction is modeled by a
Schrödinger equation, with a coupling control operator containing both a linear (dipole) and a quadratic
(polarizability) term, are analyzed. Discontinuous feedbacks, obtained by a Lyapunov trajectory tracking
procedure, have recently been proposed to control these types of system. The purpose of this paper is to
study the asymptotic stability by considering the solutions in the Filippov sense. The analysis is developed
by applying a variant of the LaSalle invariance principle for differential inclusions. Numerical simulations
are included to illustrate the efficiency of the discontinuous control.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Control of quantum systems using laser fields has been subject
to significant developments in the last two decades (see, for
example, (Assion et al., 1998; Brumer & Shapiro, 1989; Judson
& Rabitz, 1992; Levis, Menkir, & Rabitz, 2001; Weinacht, Ahn,
& Bucksbaum, 1999)). The increasing interest in this domain is
motivated by the effects of the technique: we can create or break
chemical bonds, each time with finesse far beyond the usual
macroscopic means (temperature, pressure, etc.).

Since the first successful laboratory experiments at the begin-
ning of the 1990s (Assion et al., 1998; Judson & Rabitz, 1992),
many applications of this method have been developed: designing
logical gates in future quantum computers, investigations of imag-
ing by nuclear magnetic resonance (NMR), studies of protein dy-
namics, molecular detection,molecular orientation and alignment,
construction of ultra-short lasers, etc.

From the beginning, the complexity of chemical phenomena
that arise during the interaction between the laser and the
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quantum system has required the introduction of theoretical
methods as an important step in the experimental phase. This type
of analysis can reveal the set of objectives that can be achieved, and
the nature of the laser pulse that can be used. In this context, we
consider the time-dependent Schrödinger equation, whichmodels
the evolution of a quantum system:

i
d
dt

Ψ (t) = H(t)Ψ (t), (1)

where H(t) is an Hermitian operator called the Hamiltonian,
and Ψ is a complex function called the wavefunction. When the
system is controlled by selecting a convenient laser intensity ϵ(t),
the interaction between the laser and the system is described
by an operator µ1, also called dipole coupling (Rabitz, Shi, &
Woody, 1988). Thus, we recover a bilinear form of the Schrödinger
equation, formally written as

i
d
dt

Ψ (t) = (H0 + ϵ(t)µ1)Ψ (t). (2)

In this case, H(t) = H0 + ϵ(t)µ1, where H0 is the internal
Hamiltonian operator which characterizes the system when the
laser is shut down (ϵ(t) = 0). In the limit of small laser intensities,
the first-order term ϵ(t)µ1 may be enough to adequately describe
the interaction; however, situations exist in which the dipole
coupling does not have enough influence on the system to reach
the control goal; the goal may become accessible only after taking
into account terms of higher order in the expansion of H(t), for
example a polarizability term ϵ2(t)µ2 (see, for example, Dion et al.
(1999); Dion, Keller, Atabek, and Bandrauk (1999)).
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In the following,we focus on the casewhen a second-order term
is added in the expansion of the Hamiltonian:

H(t) = H0 + ϵ(t)µ1 + ϵ2(t)µ2. (3)

For numerical reasons, a finite-dimensional setting is considered.
The operators will be restrained to a linear space spanned by an
N-dimensional set D. This set can contain for example the first N
eigenvalues of the infinite-dimensional internal Hamiltonian H0.
For simplicity, we conserve the same notation, i.e., we denote by
H0,µ1, andµ2,N×N Hermitianmatriceswith complex coefficients
and by Ψ an N-dimensional complex vector.

One important problem is to determine efficient laser fields
to control quantum systems whose Hamiltonians are defined by
(3). For this purpose, an analysis of the controllability has to
be pursued, i.e., we ask if any admissible quantum state can be
attained with some admissible laser field. This can be studied
via the general accessibility criteria (Brockett, 1973; Sussmann &
Jurdjevic, 1972) based on Lie brackets; more specific results can be
found in Turinici (2007). A detailed presentation has been made in
Coron, Grigoriu, Lefter, and Turinici (2009).

Even if positive results of controllability for systems, with the
Hamiltonian defined by (3), have been obtained, finding efficient
numerical algorithms to determine the control field remains a
very difficult task. A solution is to present the problem as a
minimization of a cost functional, which describes the goal to be
achieved, and eventually some other constraints. This approach led
to procedures such as stochastic iterative approaches (e.g., genetic
algorithms) (Li, Turinici, Ramakhrishna, & Rabitz, 2002), iterative
critical point methods (monotonic algorithms) (Maday & Turinici,
2003; Tannor, Kazakov, & Orlov, 1992; Zhu & Rabitz, 1998),
trajectory tracking, or local control procedures ((Beauchard, Coron,
Mirrahimi, & Rouchon, 2007; Chen, Gross, Ramakrishna, Rabitz,
& Mease, 1995; Ferrante, Pavon, & Raccanelli, 2002; Grivopoulos
& Bamieh, 2003; Mirrahimi, Rouchon, & Turinici, 2005; Rabitz
& Zhu, 2003; Sugawara, 2003)). One advantage of this class of
methods is that we obtain explicit control fields. Another is that
few propagations in time are required to approach the solution
of the time-dependent Schrödinger equation (TDSE). This is an
important aspect when larger systems are considered.

Lyapunov trajectory tracking techniques have been applied for
systems with Hamiltonian (3) in order to determine the control ϵ.
A first positive result has been obtained by adapting the analysis
presented in Jurdjevic and Quinn (1978) and Mirrahimi et al.
(2005), which deals with bilinear quantum systems H0 + ϵ(t)µ1.
The success of the feedback control depends on whether there
exists (non-zero) direct coupling, through µ1, between the target
state and all other eigenstates. When the same property holds for
Hamiltonian H(t) = H0 + ϵ(t)µ1 + ϵ2(t)µ2, the same type of
feedback formulas hold. When some of the (direct) coupling is
realized through µ2 instead of µ1, the previous feedback formulas
do not hold any more, and two alternatives have been proposed
(see Coron et al. (2009) for more details): discontinuous feedback
and time-varying feedback.

Only approximative asymptotic stability results have been
proved for these last two situations. This paper focuses on the case
of discontinuous feedback obtained for quantum systems with the
Hamiltonian defined by (3). The goal is to prove stability results,
and especially asymptotic stability considering the solutions of
the quantum system (1), with Hamiltonian H given by (3), in the
Filippov sense.

The rest of the paper is arranged as follows. In Section 2, we
introduce themain notation and the Lyapunov tracking procedure,
followed by the construction of the discontinuous feedback. Then,
we study the existence of solutions in the Filippov sense. In
Section 3,weprove a first stability result followedby an asymptotic
stability result. Sections 4 and 5 are dedicated to numerical
simulations and conclusions, respectively.

2. Lyapunov trajectory tracking

2.1. The Lyapunov function

We consider Eq. (1), with Hamiltonian H(t) given by (3), which
describes the evolution of an N-level quantum system submitted
to an external action:

i
d
dt

Ψ (t) = (H0 + ϵ(t)µ1 + ϵ2(t)µ2)Ψ (t). (4)

The wavefunction Ψ = (Ψj)
N
j=1 is a vector in CN , verifyingN

j=1 |Ψj|
2

= 1, i.e., Ψ belongs to the unit sphere SN(0, 1) of CN .
The function Ψ represents a complete physical description of the
state of the quantum system at every instant t .

Recall that two wavefunctions Ψ1 and Ψ2 that differ by a phase
θ(t) ∈ R, i.e., Ψ1 = exp(iθ(t))Ψ2, describe the same physical
state. To take this property into account, we add a fictitious control
ω (see also Mirrahimi et al. (2005)). Hence we will replace the
evolution Eq. (4) by

i
d
dt

Ψ (t) = (H0 + ϵ(t)µ1 + ϵ2µ2 + ω(t))Ψ (t), (5)

whereω ∈ R is a new control. We can choose it arbitrarily without
changing the physical quantities attached toΨ .We assume inwhat
follows that the state space is SN(0, 1) and that the dynamics given
by (5) admits two independent controls, ϵ and ω.

In order to obtain an explicit formula for the laser field ϵ(t),
we apply a Lyapunov trajectory tracking technique. The method
consists in introducing a time-varying function V (Ψ (t)):

V (Ψ (t)) = ⟨Ψ − φ|Ψ − φ⟩ = ∥Ψ − φ∥
2, (6)

with Ψ a smooth solution of (5) and φ an eigenvector of H0
associated to the eigenvalue λ.

The function V is nonnegative for all t > 0 and allΨ ∈ SN(0, 1),
and vanishes when Ψ = φ. We search for feedback controls such
that V is a Lyapunov function. To do that, we compute formally the
derivative of V along the trajectories of (5):

dV
dt

= 2ϵIm(⟨µ1Ψ (t)|φ⟩) + 2ϵ2Im(⟨µ2Ψ (t)|φ⟩)

+ 2(ω + λ)Im(⟨Ψ (t) | φ⟩), (7)

where Im denotes the imaginary part. For convenience, we denote
I1 = Im(⟨µ1Ψ (t)|φ⟩) and I2 = Im(⟨µ2Ψ (t)|φ⟩).

Then note that if, for example, one takes
ϵ(I1, I2) = −kI1/(1 + kI2)
ω = −λ − cIm(⟨Ψ (t)|φ⟩),

(8)

with k and c strictly positive parameters, one gets

dV/dt = −2k(I1/(1 + kI2))2 − 2c(Im(⟨Ψ (t) | φ⟩))2 ≤ 0,

and thus V is nonincreasing.
However, even if the feedback is chosen such that isV monoton-

ically decreasing, this does not automatically imply that the mini-
mum value will be reached. A convergence analysis is required.

2.2. Discontinuous feedback

The theoretical result (see Theorem 2.1) in Grigoriu, Lefter,
and Turinici (2009) shows that tracking to φ works well when all
eigenstates of H0, φ2, . . . , φN other than φ, are coupled to φ byµ1;
i.e., ⟨φj, µ1φ⟩ ≠ 0, j = 2, . . . ,N . For the important case when
some of the couplings are realized by µ2 instead of µ1, formulas
(8) are ineffective. Discontinuous and time-varying feedbacks have
been proposed to stabilize the system (see Coron et al. (2009)).



Download English Version:

https://daneshyari.com/en/article/696930

Download Persian Version:

https://daneshyari.com/article/696930

Daneshyari.com

https://daneshyari.com/en/article/696930
https://daneshyari.com/article/696930
https://daneshyari.com

