Accepted Manuscript

Title: Electrochemical treatment of anti-cancer drug carboplatin on mixed-metal oxides and boron doped diamond electrodes: Density functional theory modelling and toxicity evaluation

Authors: Sibel Barışçı, Ozge Turkay, Ebru Ulusoy, Gülfem

Soydemir, Mine Gul Seker, Anatoli Dimoglo

PII: S0304-3894(17)30785-9

DOI: https://doi.org/10.1016/j.jhazmat.2017.10.029

Reference: HAZMAT 18934

To appear in: Journal of Hazardous Materials

Received date: 10-7-2017 Revised date: 14-10-2017 Accepted date: 16-10-2017

Please cite this article as: Sibel Barışçı, Ozge Turkay, Ebru Ulusoy, Gülfem Soydemir, Mine Gul Seker, Anatoli Dimoglo, Electrochemical treatment of anticancer drug carboplatin on mixed-metal oxides and boron doped diamond electrodes: Density functional theory modelling and toxicity evaluation, Journal of Hazardous Materials https://doi.org/10.1016/j.jhazmat.2017.10.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Electrochemical Treatment of Anti-cancer Drug Carboplatin on Mixed-metal Oxides and

Boron Doped Diamond Electrodes: Density Functional Theory Modelling and Toxicity

Evaluation

Sibel Barışçı*,a, Ozge Turkaya, Ebru Ulusoya, Gülfem Soydemirb, Mine Gul Sekerc, Anatoli

Dimoglo^d

^aGebze Technical University, Environmental Engineering Department, 41400, Gebze, Kocaeli, Turkey

^bTUBITAK Marmara Research Center, Environment and Cleaner Production Institute, 41470, Kocaeli, Turkey

^cGebze Technical University, Molecular Biology and Genetics Department, 41400, Gebze, Kocaeli, Turkey

^dDuzce University, Environmental Engineering Department, 81620, Merkez, Duzce, Turkey

*Telephone: +90 262 6053208

Fax: +90 262 6053145

E-mail: sbarisci@gtu.edu.tr

HIGHLIGHTS

The electrooxidation of anti-cancer drug CrbPt by MMO and BDD electrodes has been

studied.

The most effective anode was found as Ti/RuO2 with the complete degradation of

CrbPt.

The degradation of CrbPt significantly increased with increasing current density.

DFT calculations show the formation of [Pt(NH₃)₂ (H₂O)₂]²⁺ and [Pt(NH₃)₂ (OH)₂].

The results showed that Ti/RuO₂ anode provided zero toxicity at the end of the process.

Abstract

Download English Version:

https://daneshyari.com/en/article/6969326

Download Persian Version:

https://daneshyari.com/article/6969326

<u>Daneshyari.com</u>