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a b s t r a c t

New fault diagnosis (FD) and fault tolerant control (FTC) algorithms for non-Gaussian singular stochastic
distribution control (SDC) systems are presented in this paper. Different from general SDC systems, in
singular SDC systems, the relationship between the weights and the control input is expressed by a
singular state spacemodel,which increases the difficulty in the FD and FTC design. The proposed approach
relies on an iterative learning observer (ILO) for fault estimation. The fault may be constant, fast-varying
or slow-varying. Based on the estimated fault information, the fault tolerant controller can be designed to
make the post-fault probability density function (PDF) still track the given distribution. Simulations are
given to show the effectiveness of the proposed FD and FTC algorithms.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Reliability and stability are of paramount importance for
practical processes. Fault diagnosis and fault tolerant control
theory have attracted considerable academic interest and, as a
result, a variety of techniques for FDDand FTChave beendeveloped
over the past two decades (see Basseville and Nikiforov (2002),
Frank and Ding (1997), Isermann (2005), Jiang, Staroswiecki, and
Cocquempot (2006), Patton and Chen (1996), Qu, Ihlefeld, Jin,
and Saengdeejing (2003), Wang, Huang, and Steven (1997), Yang,
Jiang, and Staroswiecki (2009) and Zhang, Polycarpou, and Parisini
(2010) for surveys). For stochastic systems, the so-far obtained FDD
approaches can be classified as
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1 The system identification technique (Isermann, 2005);
2 The observer or filter-based method (Frank & Ding, 1997);
3 The statistical approach based on the Bayesian theorem,

Monte Carlo approach, likelihood method, and hypothesis test
technique (Basseville & Nikiforov, 2002).

The first approach uses an ARMAX model to represent the system
and apply parameter identification, such as least square algorithms
or stochastic gradient approaches, to estimate the unexpected
changes in the system. In the second method, the residual can be
generated using an observer or filter and the fault can be detected
and estimated through the analysis and disposal of the residual.
Furthermore, using the estimated fault information, the fault
tolerant controller can be designed to guarantee the stability of the
post-fault closed-loop system andmaintain a certain performance.
In terms of Kalman filter-based FDD methods, the innovation is
obtained using the filter and the statistical information of the
innovation is analyzed so that it can be decidedwhether the system
has a fault or not. Generally, the observer-based or filter-based
FDD methodologies have been developed along with the observer
or filter design theory, and many of them have been applied to
practical processes successfully.

For many practical systems, the system representation can
be realized as a set of generalized dynamical ‘‘input–output’’
mathematical models between the input and the PDFs of
the output, rather than the output itself (Crowley, Meadows,
Kostoulas, & Doule III, 2000; Karny, 1996; Wang & Lin, 2000).
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These types of stochastic systems are much more general in their
forms than the classical ones, which can be used to represent
either Gaussian or non-Gaussian dynamical systems. Assuming
the unexpected changes of the parameters in these mathematical
models are regarded as faults in the system, then the FDD task
should be performed in terms of detecting and diagnosing the
faults by using the available output PDFs and the input. It is
noted that if only output PDFs can be measured rather than the
output vector itself, most existing observer-based FDD approaches
are invalid. An observer-based fault detection algorithm was first
developed in Wang and Lin (2000) to detect the fault in the non-
Gaussian SDC system based on the linear B-spline approximation
model, where signals that can be used are the input and the output
PDFs. Subsequently, the FDD algorithms (Guo & Wang, 2005; Yao
& Wang, 2008; Yin & Guo, 2009) have also been proposed for
the non-Gaussian SDC systems based on the rational B-spline
approximation model, the square-root B-spline approximation
model and the rational square-root B-spline approximationmodel.
In Guo and Wang (2005), a new observer-based fault detection
approach is formulated in terms of linear matrix inequalities
(LMIs) and the threshold is determined by the solution of LMIs
and the bounds of uncertainties. Furthermore, an adaptive fault
diagnostic observer is also designed to estimate the size of the fault.
A nonlinear adaptive observer-based fault diagnosis algorithm
is proposed in Yao and Wang (2008) to diagnose the fault in
the dynamic part of the non-Gaussian SDC systems based on
the rational square B-spline approximation model. Through the
controller re-configuration, a good output PDF tracking can still be
realized when the fault occurs.

In the above mentioned SDC systems, only dynamic links
between the inputs and the weights are considered. However, in
practice, some algebraic relations also exist between the input and
the weights, leading to a singular state space model between the
weights and the control input. Such systems are called singular
stochastic distribution control systems. Only a few works have
been reported on the FDD and FTC of such singular stochastic
systems. This forms the main purpose of the work in this paper
where the FDD algorithm of non-singular stochastic distribution
systems can be extended to that of the singular stochastic
distribution systems using an equivalent transformation. In this
context, the present work considers FD and fault accommodation
by proposing an iterative learning observer (ILO) based fault
estimation algorithm using the estimated fault information. The
fault tolerant controller is designed so as to make the post-fault
PDF still track its given distribution.

The rest of this paper is organized as follows. Section 2 presents
the model description. In Section 3, the iterative learning observer
based fault diagnosis algorithm is proposed. Section 4 gives the
design of the fault tolerant control. Simulation results of FD and FTC
are presented in Section 5, followed by some concluding remarks
in Section 6.

2. Model description

Denote γ (y, u(t)) as the probability density function of the
system output with y being defined on a known bounded interval
[a, b]; the continuous singular stochastic distribution control (SDC)
system can be expressed as follows:

Eẋ(t) = Ax(t) + Bu(t) + NF(t)
V (t) = Dx(t)

(1)

γ (y, u(t)) = C(y)V (t) + T (y) (2)

where x ∈ Rn is the state vector, V (t) ∈ Rn−1 is the output weight
vector, u(t) ∈ Rm is the control input vector and F ∈ Rm is the fault

vector. A ∈ Rn×n, B ∈ Rn×m,D ∈ R(n−1)×n, E ∈ Rn×n and N ∈ Rn×m

are system parameter matrices with rank(E) = q < n (i.e. E is a
singular matrix).

Indeed, system (1) represents the dynamic mode of the weight
vector and (2) describes the static output PDF model using the
B-spline network approximation. Eq. (2) comes from the linear
B-spline approximation (Wang, 2000):

γ (y, u(t)) =

n
i=1

ωi(u(t))φi(y) (3)

where φi(y)(i = 1, . . . , n) are the pre-specified basis functions
defined on [a, b] and ωi(i = 1, . . . , n) are the corresponding
weights. C(y) ∈ R1×(n−1), T (y) in (2) are decided by the selected
basis functions and V (t) = [ω1(u(t))ω2(u(t)), . . . , ωn−1(u(t))]T
is the independent weight vector shown in (1).

The following two assumptions are made:

Assumption 1. The system is regular, i.e. |sE − A| ≠ 0.

Assumption 2. The system has no impulse, i.e. rankE = deg
|sE − A|.

Remark 1. Assumption 1 demonstrate that when system (1) is
faultless, it is said to be regular if det(sE−A) is not identically zero.
Assumption 2 shows that when system (1) is faultless, it is said to
be impulse-free if deg(det(sE − A)) = rankE.

With these two assumptions, there exist two non-singular
matrices Q and P such that

QEP =


Iq 0
0 0


, QAP =


A1 0
0 In−q


(4)

where Q , P ∈ Rn×n, A1 ∈ Rq×q and Ii is the identity matrix of order
i. By applying the following state coordinate transformation

x(t) = P

x1(t)
x2(t)


(5)

where x1(t) ∈ Rq×1, x2(t) ∈ R(n−q)×1, it can be obtained from
Eqs. (1) and (2) that

ẋ1(t) = A1x1(t) + B1u(t) + N1F
x2(t) = −B2u(t) − N2F
V (t) = D1x1(t) + D2x2(t)
γ (y, u(t)) = C(y)[D1x1(t) + D2x2(t)] + T (y)

(6)

where B1,N1 ∈ Rq×m, B2,N2 ∈ R(n−q)×m, D1 ∈ R(n−1)×q, D2 ∈

R(n−1)×(n−q) can be determined by the following equation

QB =


B1
B2


, DP =


D1 D2


,

QN =


N1
N2


.

(7)

Under this state transformation, the static PDF model Eq. (2)
remains unchanged. This means that the transformed system (6)
is an equivalent representation of Eqs. (1) and (2). For system (6),
it is also assumed that {A1,D1} is observable.

3. Fault diagnosis algorithm

Since the ILO which is combined with an adaptive law will be
used in this paper to estimate fault F , in this sectionwewill present
the feature of the ILO proposed in Ref. Chen and Saif (2006) for the
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