ELSEVIER

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Fabrication of RuO₂-Ag₃PO₄ heterostructure nanocomposites: Investigations of band alignment on the enhanced visible light photocatalytic activity

Rengasamy Dhanabal^a, Sivan Velmathi^b, Arumugam Chandra Bose^{a,*}

^a Nanomaterials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli, 620 015, India ^b Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India

HIGHLIGHTS

- Ag₃PO₄, RuO₂ and RuO₂-Ag₃PO₄ heterostructure nanocomposites were prepared using simple wet chemical technique.
- The electric field at interface of pure Ag₃PO₄ and RuO₂-Ag₃PO₄ is found to be 310 mV.
- RuO₂-Ag₃PO₄ inhibits self oxidation of Ag₃PO₄ under this formed electric field.
- The enhanced electrons-holes separation leads the higher efficiency as well as stability for RuO₂-Ag₃PO₄.

G R A P H I C A L A B S T R A C T

ARTICLE INFO

Article history:

Received 10 August 2017 Received in revised form 9 November 2017 Accepted 17 November 2017 Available online 21 November 2017

Keywords: Silver phosphate Ruthenium oxide Visible light irradiation Mott-Schottky analysis Toxic dyes

ABSTRACT

The RuO₂-Ag₃PO₄ heterostructured nanocomposite was successfully synthesized by facile in situ deposition of porous ruthenium oxide (RuO₂) nanoparticles on the surface of the silver phosphate (Ag₃PO₄). Under visible light irradiation, the 0.5 wt.% RuO₂-Ag₃PO₄ heterostructure photocatalyst exhibits enhanced photocatalytic efficiency compared to other composites of RuO₂-Ag₃PO₄ and Ag₃PO₄. The optimized 0.5 wt.% RuO₂-Ag₃PO₄ nanocomposites exhibited 1.5 times enhanced photocatalytic activity towards the degradation of methylene blue (MB) than Ag₃PO₄. Moreover, the degradation rate of 0.5 wt.% RuO₂-Ag₃PO₄ nanocomposite towards the cationic dyes MB and rhodamine B (RhB) was nearly 6.6 times and 4.7 times higher than that towards the anionic dye methyl orange (MO). The formed heterojunction electric field of 310 mV at the interface between RuO₂ and Ag₃PO₄ heterostructure induces downward band bending of Ag₃PO₄. Also, this electric field increases the separation efficiency of electrons-holes are reactive species and the RuO₂-Ag₃PO₄ nanocomposite is highly stable, exhibited 88% of MB degradation after 4 recycles. The RuO₂-Ag₃PO₄ nanocomposites inhibit self oxidation of Ag₃PO₄ resulting improved efficiency and stability.

© 2017 Published by Elsevier B.V.

* Corresponding author.

E-mail address: acbose@nitt.edu (A.C. Bose).

https://doi.org/10.1016/j.jhazmat.2017.11.034 0304-3894/© 2017 Published by Elsevier B.V.

1. Introduction

The photocatalysis has been regarded as one of the promising technology to harness solar energy to removal and degradation of hazardous dyes, water purification and water disinfection etc. In general, the UV spectrum region which accounts only 4% of the solar energy restricts its practical day-to-day applications. As a result, the photocatalysts based on visible light sensitive semiconductors [1-7] are developed for photocatalytic degradation of dyes. Significant efforts have been paid to tailor the properties of semiconductors by doping, forming nanocomposites or designing two semiconductors to form a heterostructure [8-14]. In heterostructures, the created electric field at the interface of semiconductors ultimately determines the photocatalytic activity and stability by increasing the lifetime of charge carriers [15]. Since, the creation of electric field, the direction of charge transportation and distance of charge separation at the interface junction of so-formed heterostructures are believed to be the feasible approach for the study of visible light irradiated photocatalytic activity.

In 2001, Thomas et al. [16] have characterized the structural and the dielectric properties of nanostructured silver phosphate (Ag₃PO₄). Later, in 2010, Yi et al. [17] have reported that the Ag₃PO₄ is an *n*-type semiconductor used for photocatalytic O_2 evolution and degradation of MB under visible light irradiation. The investigations on the size [18], crystal face and morphology [19,20] clearly demonstrated that Ag₃PO₄ exhibits higher quantum yield than other visible light active metal oxides [21,22]. Subsequently, much effort has been focused on GR, RGO, GO, MWCNT [23-26], carbon quantum dots (CQDs) [27] to composite into Ag₃PO₄ due to its higher electrical conductivity which ultimately enhances the separation efficiency of photogenerated electron-hole pairs. Several metal oxide based composites of Ag₃PO₄ with CeO₂ [28], SrTiO₃ [29], TiO₂ [30], AgI [31], and SnO₂ [32] were developed. Bu et al. reported the formation of electric field between PANI/Ag₃PO₄ interfaces that improves the photocatalytic activity [33]. If the photoexcited electrons or photogenerated holes of Ag₃PO₄ are not consumed by dye molecules, it gives negative impact on its stability [34]. Thus, the photooxidation of Ag₃PO₄ needs to be improved for better photocatalytic efficiency.

RuO₂ is a transition metal oxide which can be used in various applications such as supercapacitor [35], photocatalytic water splitting [36] and photocatalytic dye degradation [37,38] due to its high chemical stability, electrical (metallic) conductivity and excellent diffusion barrier properties [39]. As the presence of small amount of RuO₂ would act as an efficient hole and electron transfer catalyst on TiO₂, an excessive amount may act as recombination centre [40,41]. RuO₂ on the ZnO nanocomposites leads the flow of holes into the RuO₂ and the band bending between RuO₂ and ZnO enhances efficient charge separation which also increases the lifetime of interfacial charge carriers thus accounting higher photocatalytic activity [42]. Therefore, compositing RuO₂ into Ag₃PO₄ to form a RuO₂-Ag₃PO₄ heterostructure nanocomposite might be a positive strategy to enhance charge transfer as well higher efficiency visible light driven photocatalyst.

In this work, we report the preparation of $RuO_2-Ag_3PO_4$ heterostructure nanocomposites based on the different weight percentage of RuO_2 (0.5, 1, 3, 5 wt.%) with Ag_3PO_4 by in-situ wet chemical method. The prepared samples show enhanced degradation of MB, RhB (cationic) and MO (anionic) dyes, under visible light irradiation. The MB degradation using of g-C₃N₄ and WO₃ also tested and compared with as-prepared samples. The downward band bending of Ag_3PO_4 is proposed due to an electric field formed at interface between RuO_2 and Ag_3PO_4 . The effective charge separation and transportation can be achieved due to the presence of electric field between RuO₂ and Ag₃PO₄, played a major role in the higher efficiency and stability of RuO₂-Ag₃PO₄ heterostructure.

2. Experimental section

2.1. Chemicals

Ruthenium (III) chloride trihydrate (RuCl₃·3H₂O) was purchased from SRL chemicals, India. Sodium tungstate (Na₂WO₄·2H₂O), sodium hydroxide (NaOH), ammonia solution (25%), nitric acid (69%), methylene blue (MB), rhodamine B (RhB) and methyl orange (MO) were purchased from Merck, India. Silver nitrate (AgNO₃), disodium hydrogenphosphate (Na₂HPO₄) and melamine (C₃H₆N₆) were purchased from Alfa Aesar, United Kingdom. All the chemicals were of analytical grade and used without any further purification. The double distilled water was used in all the experiments.

2.2. Synthesis of RuO₂ nanoparticles

The RuO₂ nanoparticles were synthesized using wet chemical technique [43]. In a typical synthesis procedure, 0.02 M of RuCl₃·6H₂O was dissolved into 100 mL of double distilled water and heated at 100 °C for 10 min. NaOH solution (1 M in 20 mL) was added drop wise into the above solution. Then, the heating was extended to 45 min with the same temperature and the resulting precipitate was subsequently centrifuged and washed several times with double distilled water. The obtained powder was dried at 80 °C for 6 h in hot air oven. Finally, the as-prepared powder was annealed at 300 °C for 3 h.

2.3. Synthesis of RuO₂-Ag₃PO₄ heterostructure nanocomposites

The RuO₂-Ag₃PO₄ heterostructure nanocomposites were prepared as follows: An appropriate amount of RuO₂ nanoparticle was dispersed into 20 mL of double distilled water. The silver ammonia complex was added (0.3 M, 1.25 mL of ammonia) into the above dispersion and stirred for 30 min (solution A). On the other hand, 0.1 M of Na₂HPO₄ was dissolved into 20 mL of double distilled water and named as solution B. Then, the solution B was added dropwise into the solution A. The solution pH was adjusted to 7.5 by simultaneous addition of 1 mL of HNO3 resulting in the formation of RuO2-Ag3PO4 composites and the solution was further stirred for 4 h under dark condition. Finally, the precipitates were centrifuged and washed several times with double distilled water. The obtained solid product of RuO2-Ag3PO4 heterostructure nanocomposites was dried at 100 °C for 6 h in hot air oven. The addition of RuO₂ to Ag₃PO₄ was varied as 0.5, 1, 3, and 5 wt.% and their results were analyzed and compared with the pure Ag₃PO₄ nanopowders. The detailed synthesize procedure of g-C₃N₄, WO₃ and characterization techniques were given in the supplementary information.

3. Results and discussion

3.1. Formation mechanism of RuO₂-Ag₃PO₄ heterostructure nanocomposites

The RuO₂-Ag₃PO₄ heterostructure nanocomposites were synthesized using in-situ wet chemical method and the schematic representation is illustrated in Fig. 1(i). RuO₂ is sonicated for 30 min in water. Then, freshly prepared $[Ag(NH_3)_2]^+$ solution was added into RuO₂ solution to form RuO₂ $[Ag(NH_3)_2]^+$ complex as demonstrated in equation (1). When Na₂HPO₄ solution was dropped into the mixture, the adsorbed Ag⁺ would react with PO₄²⁻ to form Ag₃PO₄ resulting RuO₂-Ag₃PO₄ heterostructure nanocomposites. Download English Version:

https://daneshyari.com/en/article/6969510

Download Persian Version:

https://daneshyari.com/article/6969510

Daneshyari.com