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a b s t r a c t

A new concept of finite-time stability, called stochastically finite-time attractiveness, is defined for a class
of stochastic nonlinear systems described by the Itô differential equation. The settling time function is a
stochastic variable and its expectation is finite. A theoremand a corollary are given to verify the finite-time
attractiveness of stochastic systems based on Lyapunov functions. Two simulation examples are provided
to illustrate the applications of the theorem and the corollary established in this paper.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Up until now, much work has been done in the field of finite-
time stability (FTS) and control. In the existing literature, finite-
time stability of system equilibrium can be classified into two
categories. One (Amato & Ariola, 2005; Amato, Ariola, & Cosentino,
2006; Amato, Ariola, & Dorato, 2001; Ambrosino, Calabrese,
Cosentino, & Tommasi, 2009; Garcia, Tarbouriech, & Bernussou,
2009; Kushner, 1966; Lasarevic & Debeljkovic, 2005; Michel &
Porter, 1972; Weiss & Infante, 1967; Yang, Li, & Chen, 2009; Zhang
& An, 2008) is defined as follows: given a bound on the initial
condition, the system state does not exceed a certain threshold
during a specified time interval. The other (Nersesov & Perruquetti,
2008; Ryan, 1979) is defined thus: the system state reaches the
system equilibrium in a finite time. To avoid confusion, the former
is called finite-time boundedness, and the latter is called finite-
time attractiveness.

This paper will mainly deal with finite-time attractiveness.
Initial work on finite-time attractiveness mainly focused on dis-
continuous dynamic systems which can deteriorate the system
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transient performance (Ryan, 1979, 1991). In Bhat and Bernstein
(1998) and Haimo (1986), the authors gave several conditions
of finite-time attractiveness for first-order or second-order con-
tinuous autonomous systems. For multidimensional continuous
autonomous systems, Bhat and Bernstein (2000) provided a suffi-
cient and necessary condition for finite-time attractiveness involv-
ing the continuity of the settling time function at the origin. The
other sufficient and necessary condition was given in Moulay and
Perruquetti (2006) without assuming the continuity of the settling
time function at the origin. Finite-time attractivenesswas analyzed
based on vector Lyapunov functions in Nersesov, Haddad, and Hui
(2008) and Nersesov, Nataraj, and Avis (2009). Recently, finite-
time attractiveness has been further extended to non-autonomous
systems (Moulay & Perruquetti, 2008), switched systems (Orlov,
2005), time-delay systems (Moulay, Dambrine, Yeganefar, & Perru-
quetti, 2008), and impulsive dynamical systems (Nersesov& Perru-
quetti, 2008). It should be emphasized that the existing finite-time
attractiveness literature considers only deterministic systems. Af-
ter the success of finite-time attractiveness theory and its applica-
tions for deterministic systems, how to extend them to the case of
stochastic systems, naturally became an important research area.
Unfortunately, to the authors’ knowledge, no work on finite-time
attractiveness of stochastic systems has been done at the present
stage.

The main goal of this paper is to fill the above gap, i.e., to
extend the partial results of existing finite-time attractiveness for
deterministic systems to the stochastic setting. First, we define
a stochastic settling time function which is not only a function
depending on the initial condition, but also a stochastic variable.
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Then, we further give the new concept of stochastically finite-
time attractiveness. That is, the system origin is said to be
finite-time attractive if the expectation of the stochastic settling
time function of solutions starting from a neighborhood of the
origin is finite. Based on the definition above, we establish a
theorem and a corollary to verify the stochastically finite-time
attractiveness, which are extensions of the existing results of
finite-time attractiveness for deterministic systems.

2. Stochastic stability and stochastically finite-time
attractiveness

Throughout this paper, R+ = [0, +∞), Rn denotes the real n-
dimensional space. For a given vector or matrix X, XT denotes
its transpose, Tr{X} denotes its trace when X is square, and ‖X‖

denotes the Euclidean norm of a vector X . C i denotes the set
of functions with continuous ith partial derivatives. E(x) denotes
the expectation of stochastic variable x. K denotes the set of all
functions, R+ → R+, which are continuous, strictly increasing and
vanishing at zero; K∞ denotes the set of all functions which are of
class K and unbounded.

2.1. Stochastic stability

Consider the following stochastic nonlinear system

dx = f (x)dt + g(x)dw (1)

where x ∈ Rn is the system state vector, w is an r-dimensional
independent standard Wiener process, and f : Rn

→ Rn and g :

Rn
→ Rn×r are continuous and satisfy f (0) = 0, g(0) = 0. In

this paper, for simplicity, without loss of generality, we use 0 and
x0 to denote the initial time and the initial state of the system. The
solution of system (1)with the initial state x0 is denoted by x(t, x0).

Definition 1 (Deng, Krstic, & Williams, 2001). The equilibrium x =

0 of system (1) is

• globally stable in probability if ∀ϵ > 0 there exists a class K
function γ (·) such that

P{‖x(t, x0)‖ < γ (‖x0‖)} ≥ 1 − ϵ, ∀, t ≥ 0, ∀x0 ∈ Rn, (2)

• globally asymptotically stable in probability if x = 0 is globally
stable in probability, and

P

lim
t→∞

‖x(t, x0)‖ = 0


= 1, ∀x0 ∈ Rn. (3)

For any given V (x) ∈ C2, associated with stochastic system (1),
the infinitesimal generator L is defined as follows:

LV (x) =
∂V
∂x

f (x) +
1
2
Tr

gT(x)

∂2V
∂x2

g(x)


.

Lemma 1 (Deng et al., 2001). Consider system (1) and suppose there
exist a C2 function V : Rn

→ R+ and class K∞ functions α1, α2 and
α3 such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (4)
LV (x) ≤ −α3(‖x‖). (5)

Then the equilibrium x = 0 is globally asymptotically stable in
probability.

2.2. Definition of stochastic finite-time attractiveness

Definition 2 (Stochastic Settling Time Function). For system (1),
define T0(x0, w) = inf{T ≥ 0 : x(t, x0) = 0, ∀t ≥ T }, which is
called the stochastic settling time function.

Remark 1. If T0(x0, w) ≤ +∞, we say that T0(x0, w) exists. Ob-
viously, the stochastic settling time function does not always ex-
ist for stochastic system (1). However, if stochastic system (1) is
asymptotically stable in probability, then according to Eq. (3) in
Definition 1, the solution x(t, x0) of system (1) will converge to
zero in a finite or infinite time with probability one, which implies
that the stochastic settling time T0(x0, w) exists with probability
one. It must be emphasized that T0(x0, w) is not only a function of
x0, but also a stochastic variable for a fixed x0, which is quite dif-
ferent from the case of deterministic systems (Bhat & Bernstein,
1998, 2000; Haimo, 1986; Moulay et al., 2008; Moulay & Perru-
quetti, 2006, 2008; Nersesov et al., 2008, 2009; Nersesov & Perru-
quetti, 2008; Orlov, 2005; Ryan, 1979, 1991).

Definition 3 (Stochastically Finite-Time Attractiveness). For
stochastic system (1), the origin x = 0 is said to be globally stochas-
tically finite-time attractive, if for x0 ∈ Rn, the following conditions
hold.

(i) Stochastic settling time function T0(x0, w) exists with proba-
bility one.

(ii) Provided that T0(x0, w) exists, then E[T0(x0, w)] < ∞.

Remark 2. The finite-time attractiveness of stochastic systems is
defined in a more difficult way than that of deterministic systems
(Bhat & Bernstein, 1998, 2000; Haimo, 1986; Moulay et al., 2008;
Moulay & Perruquetti, 2006, 2008; Nersesov et al., 2008, 2009;
Nersesov & Perruquetti, 2008; Orlov, 2005; Ryan, 1979, 1991)
owing to the stochastic property. Condition (i) guarantees the
existence of T0(x0, w) almost surely. Only under condition (i), one
can further discuss condition (ii). From condition (ii), it can be seen
that the finite-time property is evaluated by the expectation of
T0(x0, w).

2.3. Finite-time stability theorem using the Lyapunov function

Lemma 2. Assume that α(·) : R → R and β(·) : Rn
→ R are two

smooth functions, and x(t) is the solution of system (1). Then for any
a ≤ b, the following equation holds∫ b

a

dα(β(x(t)))
dβ

dβ(x(t))

= α(β(x(t)))
b
a
−

1
2

∫ b

a

d2α

dβ2
Tr


∂β

∂x
g
T

∂β

∂x
g


dt (6)

where α(β(x(t))) |
b
a = α(β(x(b))) − α(β(x(a))).

Proof. According to the Itô formula, one has

d[α(β(x))] =


dα
dβ

∂β

∂x
f (x) +

1
2
Tr


gT


d2α

dβ2


∂β

∂x

T
∂β

∂x

+
dα
dβ

∂2β

∂x2


g


dt +

dα
dβ

∂β

∂x
g(x)dw

=
dα
dβ

d[β(x)] +
1
2
d2α

dβ2
Tr


∂β

∂x
g
T

∂β

∂x
g


dt. (7)

Integrating both sides from a to b leads to (6). This completes the
proof. �

Theorem 1. Consider system (1). If there exist a positive definite,
twice continuous differentiable and radially unbounded Lyapunov
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